In Eukaryotes, except fungi and higher plants, the coordinated beating of the motile cilia propels unicellular organisms and regulate the flow of the extracellular fluids in multicellular life forms. In humans proper beating of these tiny nanomachines ensures removal of the mucus and bacteria out of the airways, circulation of cerebrospinal fluid in brain ventricles, transport of the oocytes in the Fallopian tubes and sperm motility. Lack or dysfunction of motile cilia leads to multisymptom group of heterogeneous human disorders called primary ciliary dyskinesia, PCD. Compared to immotile sensory cilia, whose scaffold is made of nine peripheral doublets composed of A- and B-tubule, motile cilia assemble additional structures indispensable for their proper beating: two centrally located singlet microtubules with associated projections, so called central pair complex (CPC), and macrocomplexes anchored on the surface of the peripheral doublets. The ciliary macrocomplexes: radial spokes (RS), nexin-dynein regulatory complex (D-NRC), modifier of inner arms complex (MIA), calmodulin and spoke associated complex (CSC) and inner (IDA) and outer (ODA) dynein arms form characteristic 96-nm periodicity on each doublet called the “ciliary unit” or “ciliary repeat”. The motor activity of the dynein arms is believed to be regulated by the mechachemical signals transmitted from the central pair complex through radial spokes to dynein arms. Data obtained in *Chlamydomonas* and our own analysis of the ultrastructure of *Tetrahymena* cilia indicate that there is structural and most probably also functional heterogeneity of the radial spokes and dynein arms in a single ciliary repeat. In my talk I will discuss the differences in the radial spokes architecture and protein composition as well as identification and functional analysis of the radial spokes docking complexes.

Acknowledgements

This research was supported by the Ministry of Science and Higher Education Grant (N301706640) and EMBO Installation Grant No. 2331, to DW.

Motile cilia disorders and approaches to their treatment

Zuzanna Bukowy-Bieryłło1,2, Maciej Dąbrowski1, Michał Witt1,2, Ewa Ziętkiewicz1

1Institute of Human Genetics PAS, Department of Molecular and Clinical Genetics, Poznań, Poland; 2International Institute of Molecular and Cell Biology, Warsaw, Poland

e-mail: Zuzanna Bukowy-Bieryłło <zuza@man.poznan.pl>

Cilia are small projections present on the surface of most cells in the human body. While immotile cilia are playing mostly a sensory role, multiple motile cilia on the surface of epithelial cells and single flagella of the spermatozoids are involved in the transport of mucus, brain fluid or ovum, and movement of the sperm cells. Inherited defects of motile cilia underlie the rare genetic disease, primary ciliary dyskinesia (PCD), a multisystem disorder belonging to the recently widely-studied class of ciliopathies. The molecular and genetic basis of PCD is highly heterogeneous, due to the large number of proteins involved in building the normal ciliary structure and essential to proper functioning of cilia. Mutations in 28 "PCD genes" identified so far, explain ~ approximately 65% of cases. As in most of the human genetic disorders, the majority of mutations in PCD introduce premature termination codons (PTC), which lead to the generation of a non-functional, truncated proteins. Apart from the life-long therapy of PCD symptoms, different approaches to the treatment of the disease cause are considered. One of such strategies is the translational readthrough of premature termination codons (PTC-RT) induced by specific chemical compounds. In several genetic disorders, PTC-RT approach has been proven as an effective way of restoring functional protein expression and reducing disease symptoms. Through insertion of a random amino acid in place of PTC, PTC-RT allows translation to proceed to the true end of the transcript, often resulting in a functional protein, even when incorporated amino acid differs from the wild type. Selective promotion of the PTC-RT is therefore considered an alternative to gene therapy in genetic diseases caused by PTC, especially in cases where even low levels of physiologically functional proteins are sufficient to restore the lost function. Efficiency of this approach depends on many factors: the compound used, PTC type and its sequence and tissue context etc. In my talk, I would like to summarize the state of the knowledge in this field and present some of the achievements of our laboratory in the studies of PTC-readthrough approach in PCD.
Cytoskeleton dynamics contribution to neuronal defects and pathology

Jacek Jaworski, Magdalena Blazejczyk, Malgorzata Urbanska

1International Institute of Molecular and Cell Biology, Warsaw, Poland
E-mail: Jacek.Jaworski@iimcb.gov.pl

Neurons are the highly polarized cells with very complex morphology. Consequently, proper development, function and well-being of these cells strongly rely on proper cytoskeleton dynamics and cytoskeleton-based intracellular transport. Mutations in microtubule- and actin-binding proteins as well as proteins regulating the dynamics of these two elements of cytoskeleton often cause severe neurodevelopmental (e.g., lissencephaly, Williams Syndrome) as well as neurodegenerative diseases (e.g. tauopathologies, amyotrophic lateral sclerosis, Perry syndrome). Cytoskeleton dynamics is also an important contributor to so-called aberrant plasticity, a process that accompanies, for example, epileptogenesis. During the talk, examples of importance of cytoskeleton-related proteins for proper development and neuronal function will be firstly discussed. Next, selected neuronal pathologies related to improper cytoskeleton dynamics will be described. Finally, in more detail I will present data linking a mammalian Target of Rapamycin (mTOR) to changes in cytoskeleton in neuronal physiology and pathology. mTOR is a serine-threonine kinase, forming two protein complexes – mTORC1 and mTORC2. Both of them have been shown to contribute to cytoskeleton dynamics and possibly also have their own activity as a chaperone of VEGFR. mTORC2 is thought to perform similar functions but its expression is limited to germ cells.

Acknowledgements

This research has been financed by IP2012 037872 and NN301779040 grants from Polish Ministry of Science and Higher Education.

Oral presentations

Localization and function of phosducin-like proteins (PhLP2A and PhLP2B) in eukaryotic cells

Łucja Krzemień-Ojak, Ewa Joachimiak, Stanislaw Fabczak, Hanna Fabczak

Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cell Movement Physiology, Warsaw, Poland
E-mail: łucja.krzemien@nencki.gov.pl

In order to properly perform their functions, newly synthesized proteins must achieve their native conformation. Proper folding is facilitated by the so-called molecular chaperones that prevent misfolding and formation of the aggregates as well as recognize misfolded proteins and direct them for degradation. Chaperonin containing TCP-1 (CCT) forms a large complex that is required for folding of many proteins, actin and tubulin being most important among them.

Phosducin-like protein 2A (PhLP2A) and its homolog PhLP2B in mammalian cells, are small cytosolic proteins that belong to the highly conserved phosducin-like family of proteins. It has been shown that PhLP2A is present in most tissues, modulates activity of CCT during folding of cytoskeletal proteins and possibly also has its own activity as a chaperone of VEGFR. PhLP2B is thought to perform similar function but its expression is limited to germ cells.

With real-time PCR we analyzed the expression pattern of both PhLP2A and PhLP2B in rat tissues. Our results show that while PhLP2A is ubiquitously expressed, PhLP2B is expressed as expected, in testis but also in tracheal epithelial cells, suggesting that it performs specific functions in cells with motile cilia.

To characterize the function of PhLP2A/B proteins, we attempted to identify their binding partners in NIH 3T3 fibroblasts and in cell lysates from rat sperm or tracheal epithelial cells. Using GST pull-down approach followed by mass spectrometry, we have found several proteins that may form complexes with phosducin-like proteins, such as Rab14, Rab5 and hexokinase-1, and confirmed these interactions by pull down and western blot analysis. Immunoprecipitation analysis with HA-tagged proteins expressed in NIH 3T3 cells, confirmed interactions between PhLP2A/B and Rab14 or Rab5, but not with hexokinase-1.

Results of the immunoprecipitation assay are consistent with immunolocalization data obtained in NIH 3T3, sperm and tracheal ciliated epithelial cells showing that Rab14 protein colocalizes with PhLP2A in all tested cells. Hexokinase-1 and PhLP2A colocalize only along the whole length of sperm flagella and within cilia of tracheal epithelial cells. Similar localization of hexokinase-1 in sperm cells was earlier reported by Travis and co-workers (Travis et al., 1998, Mol Biol Cell 9: 263–276).
Microtubules are dynamic cytoskeletal polymers that are involved in various cellular functions including cell division. The mitotic spindle, composed of microtubules generated by polymerization of αβ-tubulin heterodimers, has been considered one of the most important targets in treating many types of cancers. Combrertastatin A-4 (3'-hydroxy-3,4,4',5-tetramethoxy-4'-stilbene, CA-4) belong to the microtubule interfering agents (MIAs) that exhibit anticancerogenic and antivascular properties. CA-4 phosphate salt is currently in III phase of clinical trials as an adjuvant in cancer therapy.

The aim of this study was to design, synthesize and characterize new derivatives of αβ-tubulin assuming CA-4 as a leading compound. The derivatives with methylthio substituents and αβ-restricted CA-4 derivatives; oxazoles and N-methylimidazoles were synthesized. Their antitumor properties were studied in vitro with the use of tubulin polymerization assay kit (Cytoskeleton, USA). Cytotoxic activity was estimated against breast cancer cell line MCF7, human keratinocyte line HaCaT and human epidermoid carcinoma cell line A431 with the use of MTT assay. In a series of studied oxazole compounds, two potent inhibitors of tubulin polymerization were found: 4-(3,5-dimethoxy-4-methylthiophenyl)-5-(3-hydroxy-4-methoxyphenyl)oxazole (KomOx3) and 4-(3-bromo-4,5-dimethoxyphenyl)-5-(4-methoxy-3-methylthiophenyl) oxazole with IC₅₀ values of 1.05 and 0.80 µM, respectively, showing a stronger inhibition of tubulin polymerization than CA-4 (IC₅₀ = 2.5 µM). Potency of antitubulin activity of studied compounds correlated well with their cytotoxic effect in cell lines. KomOx3, an analogue of CA-4 having methylthio substituent in position 4 instead of methyl group exerted the strongest cytotoxic activity against all studied cell lines with IC₅₀ in the range 0.21-0.71 µM. Interestingly, the derivative with three substituents in both phenyl rings, 4-(3,4,5-trimethoxyphenyl)-5-(3-bromo-5-methoxy-4-methylthiophenyl)oxazole appeared to be non-active and its cytotoxic activity was poor. Contrary to oxazole derivatives, N-methylimidazoles with phenyl rings substituted in comparable manner to oxazoles did not affect the process of tubulin polymerization. Computational methods in molecular analysis of structure-activity relationship have been applied. Elucidation of the interaction between tubulin and inhibitors of its polymerization would provide the data that may be useful in the design of novel efficient drugs for cancer treatment.

O3.2

Design, synthesis and biological evaluation of novel tubulin inhibitors

Renata Mikstacka¹, Tomasz Stefański¹, Michał Cichocki², Stanisław Sobiań¹, Wanda Baer-Dubowska²

¹Poznań University of Medical Sciences, Department of Chemical Technology of Drugs, Poznań, Poland; ²Poznań University of Medical Sciences, Department of Pharmaceutical Biochemistry, Poznań, Poland

e-mail: Renata.Mikstacka@upma.pl

Ncd, a member of kinesin-14 family of microtubule retrograde motors participates in the organization of microtubules (MTs) during cell division. To perform its function, i.e. MT-MT sliding, the dimeric protein has two sets of MT-binding sites: one in the C-terminal motor domain and the other in the N-terminal tail. Although Ncd is a minus-end-directed motor, significant amount of this kinesin is found at the plus ends of spindle MTs where it is believed to counter plus-end-directed kinesins, such as Eg5. The plus end localization is ascribed to its interaction with the end-binding protein 1 (EB1). Details of this interaction are still missing. For example, it is not known if the kinesin-EB1 complex is formed in solution, or on the MT or what is the role, if any, of the tail diffusion along MT lattice.

To characterize the interaction between these proteins we measured the affinity of purified GFP-labeled Ncd tail (Ncd336, comprising amino acid residues 1-336) to QSY35-labeled EB1 by FRET. The dissociation constant (Kₐ) was high > 8 µM, indicating that Ncd-EB1 interaction in solution is weak. This suggests that Ncd interacts with MT-bound EB1 rather than with free EB1.

Next, we reconstituted the MT growth in vitro using purified proteins and observed fluorescently labeled Ncd fragments and MTs under the TIRF microscope. We used TIRF microscope in two ways in order to establish the role of Ncd-MT interaction and diffusion in the mechanism of plus-end tracking. First, we deleted the MT-binding site from Ncd336. Using cosedimentation assay we confirmed that modified Ncd336 does not bind to MTs. Ncd tail after deletion of MT-binding site was still able to track the growing MT ends, although the efficiency was much lower. Second, in order to distinguish between free and MT-bound motors we used Ncd36 fused to Dendra2, a photocoinvertible fluorescent protein. When Dendra2-Ncd36 was bound to MTs it underwent a photoconversion by laser light and emitted red fluorescence. However, Dendra2-Ncd336 in solution was not photoconverted and emitted green fluorescence. In certain conditions, we observed a red fluorescence spot tracking the growing ends of the MT. It suggests that MT-bound Ncd could be trapped by EB1 at the MT tip and track the growing end of MT.

Acknowledgements

The study was supported by National Science Center grant DEC-2012/05/N/NZ1/00020 and European Union funds by the European Social Fund.

Ewa Szczęsna, Andrzej A. Kasprzak

Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland

e-mail: Ewa.Szczesna@nenczi.gov.pl

Ncd, a member of kinesin-14 family of microtubule retrograde motors participates in the organization of microtubules (MTs) during cell division. To perform its function, i.e. MT-MT sliding, the dimeric protein has two sets of MT-binding sites: one in the C-terminal motor domain and the other in the N-terminal tail. Although Ncd is a minus-end-directed motor, significant amount of this kinesin is found at the plus ends of spindle MTs where it is believed to counter plus-end-directed kinesins, such as Eg5. The plus end localization is ascribed to its interaction with the end-binding protein 1 (EB1). Details of this interaction are still missing. For example, it is not known if the kinesin-EB1 complex is formed in solution, or on the MT or what is the role, if any, of the tail diffusion along MT lattice.

To characterize the interaction between these proteins we measured the affinity of purified GFP-labeled Ncd tail (Ncd336, comprising amino acid residues 1-336) to QSY35-labeled EB1 by FRET. The dissociation constant (Kₐ) was high > 8 µM, indicating that Ncd-EB1 interaction in solution is weak. This suggests that Ncd interacts with MT-bound EB1 rather than with free EB1.

Next, we reconstituted the MT growth in vitro using purified proteins and observed fluorescently labeled Ncd fragments and MTs under the TIRF microscope. We used TIRF microscope in two ways in order to establish the role of Ncd-MT interaction and diffusion in the mechanism of plus-end tracking. First, we deleted the MT-binding site from Ncd336. Using cosedimentation assay we confirmed that modified Ncd336 does not bind to MTs. Ncd tail after deletion of MT-binding site was still able to track the growing MT ends, although the efficiency was much lower. Second, in order to distinguish between free and MT-bound motors we used Ncd36 fused to Dendra2, a photocoinvertible fluorescent protein. When Dendra2-Ncd36 was bound to MTs it underwent a photoconversion by laser light and emitted red fluorescence. However, Dendra2-Ncd336 in solution was not photoconverted and emitted green fluorescence. In certain conditions, we observed a red fluorescence spot tracking the growing ends of the MT. It suggests that MT-bound Ncd could be trapped by EB1 at the MT tip and track the growing end of MT.

Acknowledgements

The study was supported by National Science Center grant DEC-2012/05/N/NZ1/00020 and European Union funds by the European Social Fund.

Warsaw, September 9th–12th 2014
Correlation of gelsolin level with invasion abilities of melanocytes and melanoma cells

Antonina J. Mazur, Aleksandra Makowiecka, Aleksandra Simiczew, Maria Malicka-Blaszkiewicz, Dorota Nowak

Cell Pathology Department, Faculty of Biotechnology, University of Wroclaw, Poland

e-mail: Antonina Mazur <tos_maz@wp.pl>

Gelsolin is one of the most extensively studied proteins among actin binding proteins. Published data suggest gelsolin is probably a tumor suppressor (reviewed by Nag et al., 2013). In our former studies we observed that down-regulation of GSN (gene coding for gelsolin) expression by siRNA in A375 melanoma cells decreased the number of cells able to invade into the three dimensional extracellular matrix (Litwin et al., 2012). However, this approach does not fully answer the question if gelsolin is indeed promoting cell invasion of melanoma cells. Additionally, up to date there are no studies comparing gelsolin level in melanocytes and melanoma cells. Because of that we decided to estimate GSN expression level in both melanocytes and melanoma cells and to elucidate if GSN expression level is correlated with invasion abilities of these cells.

We analyzed GSN expression at both mRNA and protein level in melanocytes and five melanoma cells lines obtained either from primary or metastatic sites. Obtained results were correlated with invasion abilities of tested cells. Actin cytoskeleton organization in tested cells was analyzed with the help of confocal microscopy. Filamentous actin, monomeric actin, gelsolin, actin:profilin complex and thymosin beta4 were visualized by using specific dyes and antibodies. We decided to include profilin and thymosin beta4 in our analysis, since gelsolin under certain conditions competes with these proteins for actin binding as we stated in our previous work (Mannherz et al., 2010). This phenomenon can potentially have an influence on cells invasion potential.

We additionally analyzed other parameters such as actin polymerization state in cytosolic fractions of tested cells. Because in our former studies we have tested only the effect of GSN expression downregulation on melanoma cell invasion abilities we have performed additionally overexpression of gelsolin to check how higher gelsolin level influences invasion potentials of tested cells.

References:

Bacterial cytoskeletal protein FtsZ as a target for new antibacterial drugs

E. Król1, I. C. Silva1,2, A. de Sousa Borges1, L. O. Regasini3, H. Ferreira2, D. J. Scheffers1

1Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands;
2Faculdade de Ciências Farmacêuticas, Depto. de Ciências Biológicas, Universidade Estadual Paulista, Brazil; 3Instituto de Química, Depto de Química Orgânica, Universidade Estadual Paulista, Brazil

e-mail: Ewa Krol <ewka.krol@gmail.com>

Bacterial cell division is a relatively novel target for antibacterial drugs discovery. It is an essential process which starts with polymerization of highly conserved cytoskeletal protein FtsZ in the middle of the cell. After the Z-ring assembly, several other proteins are recruited to the midcell forming a complex called divisome. The divisome ensures that cell division occurs in the correct time and place in the cell. The recruitment of all divisome components and their midcell localization depends on the assembly of FtsZ. FtsZ belongs to the tubulin family of cytoskeletal GTPases. The binding of GTP to FtsZ promotes the assembly of FtsZ monomers into long strands in vitro. FtsZ is conserved among bacteria and is essential for cell viability, making it a potential target for new antibiotic discovery.

Alkyl gallates are potent antibacterial agents with broad spectrum for many Gram-positive and Gram-negative bacteria. It was shown that they exhibit multifunction mode of action, including surfactant activity. However, biochemical mechanisms play a more important role in their antimicrobial activity. Here, we show that Bacillus subtilis FtsZ (FtsZ-Bs) is a direct target for alkyl gallates with the length of side chain C5-C8. We show that alkyl gallates are specific for FtsZ and are able to inactivate FtsZ GTPase by bundling FtsZ polymers and/or clustering monomers.
Regulation of contractile and cytoskeletal actin filaments by cofilin

Zofia Ostrowska, Katarzyna Robaszkiewicz, Kamila Krupińska, Joanna Moraczewska
Kazimierz Wielki University in Bydgoszcz, Faculty of Natural Sciences, Department of Biochemistry and Cell Biology, Bydgoszcz, Poland
e-mail: Zofia Ostrowska <zofost@uwb.edu.pl>

In muscle cells actin filaments are present in contractile apparatus and are part of cytoskeletal network, which maintains cell shape and integrity. While the length of contractile thin filaments is stable, the cytoskeletal filaments are subject to dynamic polymerization and depolymerization. Actin turnover is under control of cofilin 2 (CFL2), the muscle-specific actin depolymerizing factor. Contractile and cytoskeletal filaments are stabilized and regulated by different tropomyosin (TM) isoforms. αTM and βTM are striated muscle-specific isoforms, which form heterodimers and regulate contraction. TM5NM1 is a non-muscle isoform, which was also found in the cytoskeletal compartment of skeletal muscle. The goal of this work was to verify the hypothesis that TM isoforms affect dynamics of actin filaments by differentiation of CFL2 activity.

The proteins were either isolated from skeletal muscle (actin and αβTM) or expressed in bacterial cells, strain BL21 (TM5NM1 and CFL2) and used in biochemical assays. Filaments stability and binding of cofilin to the filaments were analyzed in a co-sedimentation assay. Kinetics of actin polymerization was followed by turbidimetry. Both TM5NM1 and αβTM stabilized actin by reducing the extent of the filaments depolymerization by CFL2. At substoichiometric CFL2:actin ratio both TM isoforms reduced the depolymerization degree. At higher concentrations CFL2 overcame the stabilizing activity of αβTM leading to similar degree of depolymerization as observed in the absence of TM. In the presence of TM5NM1 the filaments were stable independently on CFL2 concentration. This difference could be explained by the effects of TM isoforms on the actin affinity of CFL2. As compared to the affinity of CFL2 to unregulated actin, the affinities to the filaments saturated with αβTM and TM5NM1 were reduced 2- and 3-fold, respectively.

When used separately TM isoforms and CFL2 slowed down actin polymerization. Combining TM5NM1 and CFL2 in the polymerization reaction further increased the time required for full polymerization. Surprisingly, the presence of αβTM along with CFL2 significantly decreased the polymerization time.

The results suggest that differential regulation of CFL2 activities by TM isoforms is one of the mechanisms which diversify functions of actin filaments in muscle cells.

Postsers

P3.1

Phosducin-like protein 2 (Phlp2p) is essential for cilia assembly in Tetrahymena thermophila

Katarzyna Batko, Lucja Krzemień-Ojak, Iwona Filipiuk, Stanisław Fabczak, Hanna Fabczak
Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
e-mail: Katarzyna Batko <k.batko@nencik.gov.pl>

The phosducin-like protein 2 (PhLP2) is a conserved protein, involved in the regulation of CCT, a chaperonin whose activity is essential for folding of cytoskeletal proteins, tubulin and actin. The precise molecular function of PHLP2 is still not clear. Our studies revealed that Phlp2p is essential for cilia assembly and function. To better understand the importance of Phlp2p in cilia, we analyzed the localization and function of Phlp2p in Tetrahymena thermophila, an excellent model organism to study cilia and ciliogenesis. Both GFP or HA-tagged Phlp2 proteins are localized in cilia, basal bodies and cytosol. However, while GFP-Phlp2p is distributed evenly along the entire cilia length, Phlp2p-HA is observed in cilia as patches and resembles the localization of the components of the intraflagellar transport. Although both GFP- and HA-tagged Phlp2 had similar localization, fusion of Phlp2p to the relatively large tag, as GFP, affected protein function. GFP-Phlp2p overexpressing cells have fewer cilia and showed decreased rate of cells motility, proliferation and phagocytosis compared to wild type or Phlp2p-HA overproducing cells. Moreover, after deciliation GFP-PhLP2 cells were unable to regenerate cilia.

The negative effect of GFP-Phlp2p overexpression on ciliogenesis was abolished by simultaneous overexpression of Phlp2p-HA. Thus, elevated level of non-functional GFP-Phlp2p inhibits ciliogenesis presumably by displacing endogenous Phlp2p or by titrating out key components for cilia assembly. High level of functional HA-tagged protein can “rescue” dominant negative effect by changing the ratio between functional (HA-tagged) and non-functional (GFP-tagged) forms of Phlp2 proteins. Interestingly rat orthologs of Phlp2p, PhLP2A and PhLP2B proteins, localize in cilia of rat tracheal epithelial cells. Additionally, rat PhLP2A and PhLP2B proteins expressed in Tetrahymena cells, localized in cilia, basal bodies and cytosol. Thus ciliary localization of PhLP2 orthologs is evolutionary conserved.

Acknowledgements
This study was supported by grant N N 303 391536 from the Ministry of Science and Higher Education.
Deletion of CCDC113p protein affects cilia function in a ciliate Tetrahymena thermophila

Rafał Bazan, Ewa Waclawek, Dorota Włoga

Laboratory of Cell Movement Physiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
E-mail: Rafał Bazan <raflik@gmail.com>

Cilia are microtubule-based external cell protrusions that originate from the basal bodies. They are present in nearly all types of organism from protists to mammals, with the exception of fungi and higher plants. There are two types of cilia, immotile sensory cilia and motile locomotory cilia that enable cells motility and flow of extracellular fluids in multicellular organisms. Lack or dysfunction of cilia leads to severe human disorders called ciliopathies. The ultrastructure of cilia is well evolutionary conserved. Numerous proteomic analyses indicate that cilia may be composed of even 600-800 proteins, however function of most of these proteins remains unknown or is not well understood.

Here we present data indicating that the putative ciliary protein CCDC113p (coiled-coil domain containing), an ortholog of Chlamydomonas protein FAP263, is a basal body / ciliary protein and its absence affects cilia function in a ciliate Tetrahymena thermophila. CCDC113p protein is evolutionarily conserved and CCDC113 gene orthologs were found in the genomes of organisms assembling cilia from protist to mammals, with the exception of C. elegans, which forms ultrastructurally unique basal bodies and only sensory cilia. While expressed as N-terminally GFP-tagged protein, CCDC113p co-localizes with basal bodies. The elevated level of CCDC113p does not affect cilia assembly or function however Tetrahymena cells with knocked out CCDC113 gene swim with reduced speed compare to the wild type cells, indicating defects in the function of the locomotory cilia. Moreover, deletion of CCDC113p results in the reduction of the proliferation rate and food vacuole formation, processes known to depend upon the activity of the locomotory and oral cilia, respectively. Immunofluorescence analysis showed that the number and length of cilia in Tetrahymena CCDC113 knockout cells are similar as in wild type cells. Moreover deletion of CCDC113p does not affect cilia assembly and regeneration. Thus, taken together our data suggest that CCDC113p participate in the regulation of cilia motility.

Acknowledgements

Research was supported by the Ministry of Science and Higher Education Grant (N301706640) and EMBO Installation Grant No. 2331 both to D.W.

The effect of long and short beta-glucan on the cytoskeleton and manganese superoxide dismutase expression (MnSOD) in the human normal and malignant cells

Anna Choromanska1, Julita Kulbacka1, Magda Dubinska-Magiera2, Katarzyna Biezunska-Kusiak1, Nina Rembialkowska1, Justyna Pilat1, Remigiusz Oledzki2, Joanna Harasym2, Jolanta Saczko1

1Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland; 2Animal Developmental Biology, Department of Experimental Biology, University of Wroclaw, Wroclaw, Poland
E-mail: Anna.Choromanska <awawrzuta@gmail.com>

β-Glucan is widely applied in medicine, cosmetics and the food industry. Glucans can activate the immune system, exhibits antitumor, anti-inflammatory and antioxidant activities. Immunomodulatory and anti-cancer properties of beta-glucans result from their structure, molecular weight, degree of branching, conformation and its behavior in gastrointestinal tract. These properties depend on an isolation procedure of β-glucan. Many studies have been conducted on β-glucan extracted cereals, fungus, seaweed, yeasts and bacteria, which generally have low purity and yield or are characterized by high cost of manufacturing and by poor water-solubility. Nowadays, easy obtaining and water-soluble glucans are requested.

The aim of the study was evaluation of the changes in the cytoskeleton and expression of MnSOD in the human normal keratinocytes cell line (HaCaT) and human epithelial lung cancer cell line (A549) after incubation with β-glucan derived from oat.

The obtained results indicate that low (50 μg/ml) as well as high (200 and 400 μg/ml) concentrations of low-molecular-weight beta-glucan caused dramatic changes in cell morphology manifested by nucleus perturbations such as nuclear blebbing and abnormal chromatin condensation in both examined cell lines. In case of a high-molecular-weight beta-glucan similar abnormalities were observed at high (200 and 400 μg/ml) concentrations only in HaCaT cell line. The changes in actin filaments were not observed in opposite to low β-glucan. Immunocytochemical ABC analysis showed that both high- and low-molecular-weight β-glucan induced strong expression of manganese superoxide dismutase (MnSOD) in both tested cell lines. The both compounds derived from cereals revealed anticancer activity.

Keywords: oat β-glucan, manganese superoxide dismutase, cytoskeleton, keratinocytes, lung cancer.
Phosducin-like proteins (PhLP1, PhLP2, PhLP3), a conserved protein subfamily, participate in the regulation of CCT-mediated protein folding. Both, PhLP2 and PhLP3 play role in the biogenesis of cytoskeletal proteins, however available data are not consistent. In vitro studies suggest that yeast PhLP3 plays an inhibitory role in β-tubulin folding, whereas conversely in vivo, the studies in C. elegans point to the supporting role of PhLP3 in tubulin biogenesis. siRNA-mediated silencing of PhLP3 causes defects in microtubule architecture and aberrant cytokinesis. Recent data obtained by Hayes and co-workers support the hypothesis that PhLP3 is important for the maintenance of β-tubulin level in mammalian cells but also that its modulation can promote actin-based cytoskeletal remodeling (Hayes et al. 2011).

Ciliated protozoan Tetrahymena thermophila assembles a great variety of microtubule arrays and therefore is a splendid model to investigate the role of PhLP3 in tubulin biogenesis. In this study we examined the molecular mechanism, by which PhLP3 affects CCT activity and/or determines microtubule assembly in Tetrahymena. We approached these problems using standard biochemical, molecular biology techniques and bioinformatics. Phlp3 expressed in Tetrahymena cells as GFP or HA-tagged fusion protein, localized in cilia, basal bodies and cytosol. Overexpression of the GFP- or HA-Phlp3 resulted in mild defects in cilia function. Mutant cells showed decreased rate of cells motility, proliferation and phagocytosis compared to wild type cells. Contrary to the effect caused by the elevated level of the PhLP3 expression, cells with knocked out PHLP3 gene (PHLP3-KO) divided and moved faster than wild-type cells. To investigate if PHLP3-KO affects microtubule dynamics in vivo, we treated wild type and mutant cells with microtubule-stabilizing agent, paclitaxel. The paclitaxel induced hyperelongation of ciliary axonemes in both wild type and knockout cells, but the effect on PHLP3-KO cells was stronger. To characterize the function of Phlp3, we searched for potential binding partners of this protein. Our results of immunoprecipitation experiments followed with mass spectrometry analysis indicate that Phlp3-HAp forms complexes with some axonemal dyneins.

Reference

Acknowledgements
This study was supported by grant N N303 391536 from the Ministry of Science and Higher Education.
Basal bodies and centrioles are evolutionary conserved homologous structures. Their scaffold is composed of nine triplets of microtubules. γ-Tubulin (Gtu) is an essential component of centriole and basal body. In Tetrahymena, knockout of γ-tubulin (GTU-KO) is lethal due to the inhibition of basal body duplication and destabilization of the existing basal bodies that leads to the progressive degeneration of microtubule-based cortical structures correlated with loss of cell polarity.

Little is known about the regulation of Gtu function by posttranslational modifications. To date, only ubiquitination and phosphorylation of Gtu were described and shown to play an important role in the regulation of centrosome duplication in mammals and microtubular network formation in yeast. Till now, it is unknown if posttranslational modifications of Gtu have any effect on basal bodies.

We used mass spectrometry analysis to identify posttranslational modifications of T. thermophila Gtu. We found several sites of Gtu phosphorylation. These data together with bioinformatic analysis of available phosphoproteomes allowed us to select several serine and threonine residues that were found to be phosphorylated, and lysine residues known to be ubiquitinated. Using side-directed mutagenesis we mutated Gtu and introduced single amino acid substitutions: lysine (ubiquitination site) by unmodifiable arginine and serine and threonine by alanine (mimicking permanent dephosphorylation) or aspartic acid (permanent phosphorylation). Mutated HA-tagged Gtu was expressed in Tetrahymena cells.

γ-Tubulin with replaced two lysines known to be ubiquitinated in mammals rescued GTU-KO Tetrahymena cells and restored wild type phenotype. This suggests that in Tetrahymena ubiquitination of Gtu on these residues is dispensable for basal body function.

Tetrahymena mutants carrying mutations mimicking permanent phosphorylation or dephosphorylation of serine or threonine residues showed abnormal phenotypes: reduction of the number of basal bodies and basal body rows (BBRs) and misposition of basal bodies with abnormal location of accompanying structures.

Our findings suggest that phosphorylation of γ-tubulin on several residues could regulate basal body duplication and positioning within cell cortex and thus influence the formation of the cell cortex polarity.

Acknowledgements

Supported by N N303 817840 grant from the Polish Ministry of Science and Higher Education and by EU FP7 Project, GA No 264173 (Bio-Imagine).

P3.6

Gamma-tubulin phosphorylation on specific residues is correlated with the regulation of the basal body duplication and positioning

Ewa Joachimiak1,2, Wojciech Brutkowski3, Paulina Urbanska1, Dorota Włoga1

1Nencki Institute of Experimental Biology, Laboratory of Cell Movement Physiology, Warsaw, Poland; 2University of Warsaw, Faculty of Biology, Department of Animal Physiology, Warsaw, Poland, 3Nencki Institute of Experimental Biology, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland

e-mail: Ewa.Joachimiak@nencikogov.pl

In previous works we demonstrated that C. coronatus is able to overcome G. mellonella immunity mechanisms alerted by intruder invasion (increased phagocytic activity of PI, elevated lysozyme level) chiefly by releasing toxic proteins disintegrating Sfs and decomposing hemocytic nets. Fungal metabolites seem to be also responsible for suppression of the prophenoloxidase-activating system in G. mellonella.

Invertebrate model hosts represent valuable tools for the study of host-pathogen interactions because they facilitate the identification of parasitic virulence factors and allow the discovery of novel components involved in host immune system responses. In this work, we determined that the greater wax moth, Galleria mellonella, is a convenient non-mammalian model host for studying the effects of pathogenic fungus Conidiobolus coronatus infection on insect’s immunocompetent blood cells (hemocytes), and described infection-induced changes in hemocytes’ morphology and cytoskeleton organization.

In the hemolymph of G. mellonella last-instar larvae five types of hemocytes are present: granulocytes (Gr), plasmatocytes (Pl), oenocytes (Oe), sferulocytes (Sf) and prohemocytes (Pr). Two of them, Gr and Pl possess the ability to adhere to foreign surfaces and participate in cellular innate immune mechanisms (phagocytosis, encapsulation, and nodulation).

C. coronatus, a soil cosmopolitan pathogenic fungus easily attacks G. mellonella larvae and demonstrates high efficiency in induction of insects’ mortality. Insect larvae were exposed to fully grown and sporulating C. coronatus colonies for 18 hours. Hemolymph was collected 24 and 48 h after exposure, stained with phalloidin – FITC and Hoechst 33342, and analyzed under fluorescence microscope. As controls served hemocytes obtained from healthy larvae. At 24h post infection, no significant changes in the adherence ability of Gr and Pl were observed but first changes in the cytoskeleton organization began to appear. Gr started to form thin and long fibers around the entire cell, Pl extended and became ‘hyperspreading’, some of Pls contain a lot of actin spots and remindered detaching cells. However, 48h after infection only few cells were able to adhere but not to spread, actin distribution was disturbed, in some cases ‘naked nuclei’ were visible which suggests that cells have lost membrane integrity. Cells in controls looked normal – Pl had a fibroblastic shape and form regular filopodia, in Gr actin cytoskeleton and cytoplasm spread symmetrically around the cells.

In previous works we demonstrated that C. coronatus provoked in G. mellonella hemocytes cultured in vitro cytoskeleton changes similar to those described here, it proves that C. coronatus own abundant toxic metabolites in its repertoire.

P3.7

Effect of the entomopathogenic fungus Conidiobolus coronatus infection on morphology and cytoskeleton of hemocytes isolated from the greater wax moth, Galleria mellonella (Lepidoptera)

Marta Ligęza-Zuber1, Marta Polańska2, Mieczysława I. Boguś1,3

1Institute of Parasitology PAS, Animal Phisiology, Poland; 2University of Warsaw, Animal Phisiology, Faculty of Biology, Warsaw, Poland; 3Biomibo, Poland

e-mail: Marta.Ligęza <martaligeza@twarda.pan.pl>
P3.8

Role of HAX-1 protein in cell migration and invasion
Ewelina Macech, Alicja Trębińska, Ryszard Konopiński, Ewa Grzybowska
The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Molecular and Translational Oncology, Warsaw, Poland
e-mail: Ewelina Macech <emacech@coi.pl>

It was proposed that the HAX-1 protein was engaged in many cellular processes like apoptosis, cell migration and adhesion. To further investigate its biological function we established the pairs of stable cell lines with silenced or normal expression of HAX-1 gene in HeLa, HEK293 and MDA-MB-231 cells. Through such a diversity of cell lines we provide the opportunity to test the influence of HAX-1 on various type of cells (epithelial and mesenchymal-like).

Our results show that stable cell line with silenced HAX-1 derived from HeLa cells (miH1) is more invasive than the respective control cell line (mineg). Moreover, there are also differences between those cells in scratch assay tests and migration tests. In conclusion, our results support the thesis that HAX-1 protein is involved in processes like cell migration and invasion.

P3.9

Electrotaxis of two sublines of Walker WC256 carcinosarcoma cells representing blebbing or lamellipodial strategy of movement
Jolanta Sroka, Izabela Krecioch, Eliza Zimoląg, Sławomir Lasota, Monika Rak, Paweł Borowicz, Marta Gajek, Zbigniew Madeja
Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
e-mail: Zbigniew Madeja <z.madeja@uj.edu.pl>

Although sensing of the electric fields (EF) is important for directional cell migration during wound healing, embryonic development, nerve growth and cancer metastasis, the underlying mechanism still remains unclear. Additionally there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement — specifically blebbing vs lamellipodial migration.

In the current study we arranged an unique experimental model which allows us investigation of the electrotactic movement of cells of the same origin but representing different modes of cell migration depending on the strength of adhesion to the substrate. By epigenetic selection we obtained two adherent sublines of Walker carcinosarcoma cells, representing different modes of cell migration: weakly adherent, spontaneously blebbing WC256 cells (BC) and lamellipodia forming WC256 cells (LC). Visualization of F-actin in living cells (LifeAct) revealed that in blebbing (BC) WC256 cells, expanded blebs were devoided of actin and the cell membrane detached from the cortex. In contrast, in lamellipodia forming (LC) WC256 cells the protrusion was seen as wide band of fluorescent labeled F-actin.

Here, we report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the observed reaction was much faster in the case of BC (5 minutes) than LC cells (30 minutes) after the change of dcEF polarity. We also investigated distinct requirements for Rac, cdc42 and Rho pathways and the role of extracellular Ca^{2+} ions in guidance by electric fields of WC256 sublines forming different types of cell protrusions. Significant differences in the reaction were observed after Rac, cdc42 and ROCK inhibition. It was found that Rac GTPase is required for directional movement of LC but not for BC cells. In contrast ROCK and cdc42 activity was necessary for electrotaxis of BC but not LC cells. The obtained results also showed that Ca^{2+} ions are essential only for the electrotactic reaction only of BC cells.

In conclusion, our results reveal that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells mediated by different signalling pathways.
Synaptic podosomes - actin-rich organelles involved in muscle postsynaptic machinery remodeling

Paweł Niewiadomski1, Jolanta Jóźwiak2, Krzysztof Bernadzki1, Katarzyna Rojek1, Maria Jolanta Rędowicz2, Joshua Sanes3, Tomasz Prószyński1

1Nencki Institute of Experimental Biology, Laboratory of Synaptogenesis, Department of Cell Biology, Warsaw, Poland; 2Nencki Institute of Experimental Biology, Laboratory of Cell Motility, Department of Biochemistry, Warsaw, Poland; 3Harvard University, Department of Molecular and Cellular Biology, Cambridge, MA, USA

e-mail: Paweł Niewiadomski <t.proszynski@nencki.gov.pl>

Neuromuscular junctions (NMJ) are specialized cholinergic synapses that form between motor neurons and skeletal muscle fibers. Like synapses in the brain, NMJs undergo intense synaptic remodeling. In the course of postnatal development, acetylcholine receptors (AChR), major components of the postsynaptic machinery at the surface of the muscle fiber aggregate into a plaque-like assembly, which is subsequently reorganized into a complex structure that resembles a pretzel. The molecular mechanism that underlies this so-called “plaque-to-pretzel” transition of the NMJ is poorly understood, but it has been thought to be guided exclusively by the presynaptic nerve terminals. Recent studies show that the reshaping of the postsynaptic machinery in cultured muscle cells can occur in muscle cells cultured in the absence of neurons suggesting that muscle cells may have their intrinsic mechanism for the remodeling of the AChRs assembly. Previously, we have reported an unexpected discovery that the remodeling of the postsynaptic machinery in cultured myotubes is dependent on podosomes, actin-based protrusive structures involved in cell adhesion and extracellular matrix degradation. We further show that the scaffold protein Amotl2 is associated with podosomes in various cell types and that it regulates the development of the postsynaptic specialization in cultured muscle cells through the regulation of synaptic podosomes. Furthermore, we demonstrate that both actin and Amotl2 are present in vivo in postsynaptic areas of the NMJ predicted to contain synaptic podosomes, supporting our model in which muscle cells utilize podosomes as part of a muscle-intrinsic program that influences NMJ remodeling. Additionally, we provide evidence that Amotl2 binds directly to actin and regulates its nucleation, suggesting a potential biochemical mechanism for AChR cluster remodeling.

Microscopy techniques and image analysis in glioma C6 migration studies

Natalia Nowak1, Jarosław Korczyński1, Wanda Kłopocka1, Paweł Pomorski2,3

1Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Neurobiology Center, Warsaw, Poland; 2Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland; 3Multimodal Laboratory of Cell Adhesion and Motility, Nencki Institute of Experimental Biology, Warsaw, Poland

e-mail: Paweł Pomorski <pp@nencki.gov.pl>

Gliomas are a group of tumors characterized by strong dependence of tumor invasion on cell motility due to the isolation from circulation by the blood-brain barrier. Regulation of their movements involves chemotaxis driven by extracellular nucleotides which act on specific GPCRs from P2Y group. One of them, the P2Y2 receptor may be activated with ATP or UTP and regulates multiple signaling pathways in the cell, such as calcium response and Rac1 and RhoA proteins activation.

In our study we applied microscopy techniques to research glioma C6 cells migration and morphological properties which depend on nucleotide signaling from P2Y2 receptor. The aim of this study was the optimization of time-lapse live cell tracking. Glioma C6 cells chemotactic migration was examined with time-lapse DIC microscopy. Obtained data was processed with ImageJ plugins to perform time lapse images registration which improved the reliability of cell tracking and to stitch the adjacent fields of view to enable tracking of cells localized near the border of the field of view. Subsequently Metamorph software was used to track cells using direct tracking method and then cell trajectories were analyzed with a Matlab script to calculate migration parameters. Developed procedures eliminated random component of trajectory which was dependent on mechanized stage inaccuracy and allowed following cells crossing frame edges during experiment.
Cilia are tiny cells protrusions, common in Eukaryotes except higher plants and fungi. Based on the ability to generate movement, cilia are divided into two categories: motile and immotile. Besides a scaffold made of nine peripheral microtubule doublets, characteristic for both types of cilia, motile cilia have two additional, centrally positioned single microtubules and complexes associated with peripheral doublet microtubules including inner and outer dynein arms, radial spokes, and nexin-dynein regulatory complex. Mechanochemochemical signals transferred from the central microtubules through radial spokes to the dynein arms regulate ciliary waveform and ciliary beat frequency. In motile cilia there are three types of radial spokes (RS1, RS2 and RS3) that repeat as triplets along peripheral microtubules. RS3 is reduced to short knob while in other analyzed organisms (e.g. Chlamydomonas reinhardtii), it was shown that three evolutionary conserved proteins FAP91, FAP251 and FAP61, together with calmodulin, form a CSC complex (cilium subcomplex), located near the base of the RS2 and RS3. Depletion of either FAP61 or FAP91 results in lack or reduction of the RS2 and RS3. Our analysis further elucidates the localization and role of FAP61 and FAP251. Using polyclonal antibodies, we showed that murine orthologs of FAP61 and FAP251, C20orf26 and WDR66, respectively, localize in motile cilia of multiiliated tracheal epithelial cells but not in non-motile primary cilia of IMCD-3 cells, suggesting that studied proteins are motile cilia-specific proteins. In Tetrahymena cells both, FAP61 and FAP251 also localize in cilia. Deletion of either protein does not affect cilia assembly and stability but results in strongly reduced cell swimming velocity, compared to wild type cells. Video recording revealed that cilia in FAP61-KO and FAP251-KO mutants are less flexible and display modified beat waveform. The ultrastructural analysis showed that in Tetrahymena CSC complex is positioned only at the base of the RS3 and knockout strains lack or assemble only partial RS3 while RS1 and RS2 are unaltered. Thus, heterogeneity of the RS3 morphology in Chlamydomonas and Tetrahymena correlates with the differences in the positioning of CSC complex.

Acknowledgements
This research was supported by the Ministry of Science and Higher Education Grant (N301706640) and EMBO Installation Grant No. 2331 both to DW.
P3.14

Effect of cGMP and dexamethasone on high glucose-dependent changes in podocytes

A. Waszkiewicz, A. Maryn, E. Latawiec, B. Lewko, A. Rybczyńska

1Department of Pathophysiology Medical University of Gdańsk, Gdańsk, Poland; 2Laboratory of Cellular and Molecular Nephrology, Medical Research Centre of the Polish Academy of Sciences, Gdańsk, Poland

e-mail: Anna Waszkiewicz <aniaw@gumed.edu.pl>

Introduction: Podocytes are cells responsible for maintaining the kidney filtration barrier and their impairment leads to proteinuria. Permeability to proteins is associated with changes of podocyte motility. Vasorelaxing mediator cyclic GMP may modulate podocyte cytoskeleton and adhesion. Matricellular protein thrombospondin-1 (TSP-1) that is upregulated in diabetic kidney, may be another factor affecting podocyte adhesion and integrity. Podocytes are a direct target for glucocorticoids which are commonly used to treat nephrotic syndrome and other proteinuric diseases.

Aims: In the present study we examined (1) the effect of high glucose and cGMP on podocyte-dependent TSP-1 synthesis and (2) the effect of cGMP and glucocorticoids on podocyte motility in the presence of high glucose.

Methods: Immortalized mouse podocytes were preincubated in media containing normal (NG, 5.6 mM) or high (HG, 30 mM) glucose for 5 days. Then, 1 μM dexamethasone (DEX) or 8 bromo-cGMP (non-metabolizable cGMP analog) were added for next 24 hours. Total RNA was isolated from the cells and RT-PCR analysis was performed. Resulting bands were visualized on agarose gel and gene expression was assessed using densitometry. Migration was investigated by wound--healing assays. Some cells were cultured on the glass cover slips and TSP-1 protein together with F-actin were visualized by immunofluorescence.

Results: Podocytes cultured in both, HG and NG media express the TSP-1 gene. High glucose enhanced TSP-1 expression by 55±3%, as compared to NG. Within NG group, stimulation of cGMP did not evoke any significant changes in TSP-1 gene. In HG cells, 8 Br-cGMP inhibited the TSP-1 expression by 56±11%. High glucose increased the motility of podocytes and the effect was enhanced by 8-Br-cGMP. DEX inhibited the glucose- and cGMP-stimulated motility of podocytes.

Conclusions: Elevated TSP-1 may trigger signaling pathways leading to podocyte injury in diabetes. Increased cGMP motility of podocytes may result in disruption of filtration barrier and proteinuria. Glucocorticoids may protect the integrity of renal filter by stabilizing the structure of podocytes.

Acknowledgements

Sponsored by the Ministry of Science and Higher Education of the Republic of Poland-the Leading National Research Centre (KNOW) programme and by St-49 grant to A.R.

P3.15

Two populations of mouse bone marrow-derived cells migrate differently in a physiological direct current electric field

Eliza Zimoląg, Julia Borowczyk, Elżbieta Karnas, Ewa Zuba-Surma, Jolanta Sroka, Sławomir Lasota, Justyna Drukała, Zbigniew Madeja

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland

e-mail: Eliza Zimoląg <eliza.zimolag@uj.edu.pl>

Introduction: Transepithelial potential (TEP) is established in a skin and other tissues as a result of unequal distribution of ions across the epithelial layer. After wounding the conductive extracellular pathway is created and ion flux generate endogenous extracellular direct current electric field (DC EF) with the negative pole located at a wound center. These naturally-occurring EFs last during healing and may guide cell migration by process known as an electrotaxis. To date, it was shown that many cell types respond to physiological levels of EFs with accelerated, directed migration mostly toward the cathode. Mounting of evidence suggest that bone marrow-derived cells may be involved in healing of cutaneous wound, contributing to skin cells or releasing regulatory cytokines.

In our study, application of DC EF of physiological level (100–300 mV/mm) to the adherent fraction of mouse bone marrow cells results in their accelerated migration parallel to the EF lines. Further analysis lead us to discrimination of two cell subpopulations migrating to the opposite poles. These populations exhibit significantly different morphological and migratory features. The anodal cells are relatively small, elongated and they form a narrow lamellipodium at the anode-facing site of the cell setting their long axis square with the EF lines. At the same time, the cathodal cells are larger, more flattened and they tend to elongate perpendicular to the field lines. Both populations show most directed migration in 300 mV/mm with the directional cosinus γ values of 0.84±0.04 for cathodal, and -0.90±0.02 for anodal cells. Moreover, these two cell types utilize different cellular pathways in their response to DC EF. Phosphatidylinositol-3 kinase/Akt kinase seem to be more essential for efficient migration of cathodal cells under EF, whereas small GTPases Rac1 and Cdc42 are more involved in electrostatic response of anodal cells. Interestingly, cell markers analysis lead us to conclusion, that cells migrating toward the anode are of hematopoietic origin, mostly they comprise bone-marrow macrophages, while the cathodal cells contain the fraction of mesenchymal stem cells. Taken together, our results suggest that response to physiological DC electric field may be one of the factors that discriminate bone marrow mesenchymal stem cells attraction to the site of wounding simultaneously excluding other cell types like macrophages from the wound bed.

Acknowledgements

Funded by POIG.01.02.00-109/09.
P3.16

The studies on the presence of functional P2X7 receptors at different cell lines

Danuta Piotrkowska, Łukasz Pęczek, Agnieszka Krakowiak

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland.
e-mail: Danuta Piotrkowska <danka@cbmm.lodz.pl>

P2X7 receptors (P2X7Rs) are members of the family of ionotropic ATP-gated receptors. Activation of P2X7Rs by extracellular ATP triggers two distinct fluxes. The first reflects a rapid and reversible current through the channels permeable to small mono- and divalent cations, while the second one allows to open a nonselective pore suitable for the passage of the molecules up to a molecular mass 900 Da. Additionally, the activation of P2X7Rs by ATP may induce the programmed cell death. The P2X receptors are distributed in many tissues, and P2X7Rs are primarily localized in epithelial and immune cells, particularly in the antigen-presenting cells.

The P2X7 receptor channels are used to transport into a cell certain membrane-impermeable compounds, for example analogs of components of nucleic acids. Because active, functional P2X7Rs are not widely distributed, we decided to measure the level of mRNA (by the real time RT PCR) and protein (by western blot) for the P2X7 receptors in several cell lines. In addition, functional activity of the P2X7 receptors was determined in some cell lines expressing the P2X7 receptor gene.

The measurements were based on the fluorescence of ethidium bromide and propidium iodide uptaken by the cells following ATP-dependent formation of cell pores. In these experiments, the buffer was used that fosters ATP-induced permeabilization, with simultaneous high cell survival. We assume that channels of this type, reversibly open/close by extracellular ATP, might serve as a mean to introduce membrane-impermeable analogs of components of nucleic acids into the cytoplasm.

* The studies were supported by The National Science Centre grant no DEC-2013-～09/B/ST5/03612 (to AK).