Dietary resistant dextrins positively modulate fecal and cecal microbiota composition in young rats*

Katarzyna Śliżewska1,2, Zdzisława Libudzisz1, Renata Barczyńska2, Janusz Kapuśniak2, Zenon Zduńczyk3 and Jerzy Juśkiewicz3

1Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland; 2Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Częstochowa, Poland; 3Institute of Animal Reproduction and Food Research, Polish Academy of Science in Olsztyn, Olsztyn, Poland

The objective of the present study was to demonstrate the effect of dietary resistant dextrins, as potential prebiotics, on the intestinal microflora of young rats. Enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and tartaric (40% dsb) acid at 130ºC for 2 h (CA-dextrin). The experiment was performed on 24 Wistar male rats at 3-wk of age, divided by analogues in three experimental groups (control, starch and dextrin). Analyses determined the overall bacterial counts and the counts of Lactobacillus, Bifidobacterium, Bacteroides and Clostridium strains within the feces and cecal contents of rats using fluorescence in situ hybridization method. CA-dextrin had no effect on primary growth indicators (body weight, body weight gain, dietary consumption) or the mass of the small intestine and the cecum, but dextrins caused a reduction in pH and the concentration of ammonia within the cecal contents. That supplementation of diet with resistant dextrins had a positive effect on composition of intestinal microflora in rats. It increased the counts of Bifidobacterium and Lactobacillus strains both in the feces and in the cecum. Moreover, it reduced the counts of Clostridium and Bacteroides strains. These results may suggest that resistant dextrins exerted a prebiotic-like effect in the large intestine.

Key words: resistant dextrin, microflora, rats
Received: 15 July, 2015; revised: 17 September, 2015; accepted: 05 October, 2015; available on-line: 27 November, 2015

INTRODUCTION

In food science, increasing attention has been paid to the possibility of modulating the composition of intestinal microbiota in humans and animals by means of appropriate food supply. Gastrointestinal tract of healthy individuals is colonized predominantly by microorganisms that are neutral or beneficial for their health (autochthonous microorganisms) (Koboziev et al., 2014). However, excessive proliferation of bacteria classified as neutral may disturb the systemic function. Enterobacteriaceae, Strепtococcus, Bacteroides, and Escherichia coli strains, which are naturally present within the large intestine, may cause diseases when becoming predominant (Blaut et al., 2007). Quantitative and qualitative composition of intestinal microorganisms may also be subject to changes or complete devastation due to exogenous factors. Disruption of normal equilibrium may be a result of chemotherapy or bacterial or viral infections, or surgeries (Kleessen et al., 2000). The quantity and quality of intestinal microbiota is also determined by environmental conditions, overall health, mental stress and individual factors (age, gender, genotype, intestinal passage time and peristalsis) (Azad et al., 2015; Preidis & Versalovic, 2009). Diet is one of the major factors affecting the quality of intestinal microorganisms (Guerin et al., 2003). With this regard, wide possibilities are offered by the dietary use of amylolytic enzyme digestion-resistant large-molecular dextrins obtained by means of modification of potato starch.

Resistant dextrins are defined as short chain glucose polymers devoid of sweet flavor and characterized by significant resistance to the hydrolytic effects of digestive enzymes in humans (Ohkuma et al., 1999). The first step in the process of preparation of resistant dextrins from starch includes pyroconversion consisting of four stages: thermolysis, transglucosylation, rearrangements and repolymerization. Thermolysis of starch leads to the cleavage of α-D-(1→4) and α-D-(1→6) glycosidic bonds, resulting in products characterized by lower molecular mass, higher viscosity and increased reducing sugar content. Transglucosylation is followed by recombination of hydrolyzed starch fragments with free hydroxyl groups leading to formation of highly-branched structures. Repolymerization of glucose and oligosaccharides leading to formation of large molecular compounds occurs at high temperatures and at the presence of acidic catalyst (hydrochloric acid). The resulting pyrodextrins are a mixture of poly- and oligosaccharides of varied degrees of polymerization and thus of varied molecular mass. Next, pyrodextrins are subjected to enzymatic hydrolysis of chromatographic separation, i.e. stages aimed at separation of fractions other than those typical for starch, i.e. containing bonds other than α-(1→4) and α-(1→6)-glycosidic bonds (Berenat et al., 2002; Wang et al., 2001). Much is expected of the use of starch modification products, particularly resistant starches and resistant dextrins, as prebiotic substances. It has been reported that the consumption of prebiotic substances stimulates the growth of not only Bifidobacteria (bifidogenic effects), but also of strains be-

*The results were presented at the 6th International Weigl Conference on Microbiology, Gdańsk, Poland (8–10 July, 2015).
Abbreviations: BW, final body weight; CA-dextrin, enzyme-resistant citric acid-modified dextrin; Cy-3, cyanine-3; DAPI, 4′,6-diamidino-2-phenylindole; dsb, dry starch basis; FISH, fluorescence in situ hybridization; Fluo, fluorescein; PI, prebiotic index; RS, resistant starch.

a-mail: katarzyna.slizewska@p.lodz.pl
longing to the phyla *Bacteroides* and *Actinobacteria*, while inhibiting *Firmicutes* strains (Martinez et al., 2010).

The objective of this study was therefore to demonstrate the effect of dietary resistant dextrins, as potential prebiotics, on the intestinal microflora of young rats. The scope of the study included determination of overall bacterial counts as well as of the counts of *Lactobacillus*, *Bifidobacterium*, *Bacteroides* and *Clostridium* strains in the feces and cecal contents of rats fed with resistant dextrins-supplemented diet.

MATERIALS AND METHODS

Materials. The study was conducted on 24 male Wistar rats divided into 3 experimental groups, 8 animals per group, according to the study diet (Table 1). The experiments were conducted at the Institute of Animal Reproduction and Food Research, Polish Academy of Science in Olsztyn. All experimental procedures involving animals were conducted according to the Polish legal regulations concerning experiments on animals (following a decision issued by the Local Ethical Committee for Experiments on Animals No. 61/2009/N of 21 June 2009). Rats were kept in standard conditions, at ambient temperature of 21–22°C, relative humidity of 50–70%, with extensive ventilation and 12-hour artificial daylight. In the fourth week of diet administration, animals were anesthetized, weighted and subjected to laparotomy. Dissection of animals was performed in sterile conditions. Next, cecal contents and tissues were collected for microbial analysis. Composition of cecal contents of rats were determined the overall bacterial counts and the counts of *Lactobacillus*, *Bifidobacterium*, *Bacteroides* and *Clostridium* strains within the feces and cecal contents of rats. Feces were collected before as well as in successive weeks of study diet administration. In the last week, rat cecal contents were collected for microbial analysis. Composition of intestinal microbiota was determined by means of fluorescent in situ hybridization (FISH).

Preparation of dextrin. Enzyme-resistant citric acid-modified dextrin (CA–dextrin) was prepared following the method of Kapusniak et al. (2008). Thus, potato starch was sprayed with hydrochloric acid solution (0.5% w/v) to obtain a final HCl concentration of 0.1% on a dry starch basis (dsb). The citric acid solution (0.5% w/v) was then added to obtain a final organic acid concentration of 0.1% dsb. Thoroughly mixed sample was dried at 110°C to obtain a final moisture content below 5%. Dried sample (10 g) was placed in an anti-pressure bottle (SIMAX), capped and heated at 130°C for 3 h in an ELF 11/6 EUTHERM CARBOLITE oven (Hope, England). Product was cooled in a desiccator and milled to powder. Dextrin was then washed with 80% EtOH to remove excess of citric acid, and low molecular weight material formed during dextrinization, dried overnight at 50°C, and then at 110°C for 1 h, and finally milled in a cyclone lab sample mill (UDY Corp., Fort Collins, CO, USA).

Determination of the number of bacteria. Analyses determined the overall bacterial counts and the counts of *Lactobacillus*, *Bifidobacterium*, *Bacteroides* and *Clostridium* strains within the feces and cecal contents of rats. Feces were collected before as well as in successive weeks of study diet administration. In the last week, rat cecal contents were collected for microbial analysis. Composition of intestinal microbiota was determined by means of fluorescent in situ hybridization (FISH).

Table 1. Study groups and relevant diet compositions (%).

<table>
<thead>
<tr>
<th>Component</th>
<th>Control group</th>
<th>Starch group</th>
<th>Dextrin group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein (>85%)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>DL-methionine</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5.0</td>
<td>–</td>
<td>5.0</td>
</tr>
<tr>
<td>Sucrose</td>
<td>10.0</td>
<td>–</td>
<td>10.0</td>
</tr>
<tr>
<td>Potato starch</td>
<td>100</td>
<td>–</td>
<td>100</td>
</tr>
<tr>
<td>Dextrin</td>
<td>–</td>
<td>10.0</td>
<td>–</td>
</tr>
<tr>
<td>Soya bean oil</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Mineral-mix (AIN-93G-MX)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Vitamin-mix (AIN-93G-VM)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Corn starch</td>
<td>53.2</td>
<td>53.2</td>
<td>53.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

Materials. The study was conducted on 24 male Wistar rats divided into 3 experimental groups, 8 animals per group, according to the study diet (Table 1). The experiments were conducted at the Institute of Animal Reproduction and Food Research, Polish Academy of Science in Olsztyn. All experimental procedures involving animals were conducted according to the Polish legal regulations concerning experiments on animals (following a decision issued by the Local Ethical Committee for Experiments on Animals No. 61/2009/N of 21 June 2009). Rats were kept in standard conditions, at ambient temperature of 21–22°C, relative humidity of 50–70%, with extensive ventilation and 12-hour artificial daylight. In the fourth week of diet administration, animals were anesthetized, weighted and subjected to laparotomy.
Fluorescence in situ hybridization. In FISH studies using the following probe: Eub338, Lab 158, Enter 484, Enter 1432 (Table 2). In addition, the total number of microorganisms was determined by DAPI staining. To 0.5 g intestinal contents, 4.5 ml PBS and glass beads of a diameter of 4 mm, were added. The samples were vortexed followed by centrifugation at 2000 rpm for 5 min. A 4% paraformaldehyde was added to the supernatant at a ratio of 1:3. Incubation was conducted for 18 h at 4°C. Then, the precipitate was centrifuged (10000 rpm, 10 min, 4°C), and washed 3 times with PBS. The precipitate was stored in 1 ml 50% ethanol (in PBS) at 4°C until the proper analysis. To a small PCR tube, 50 µl was transferred followed by the addition of 20 µl of lysozyme in TRIS-EDTA. After vortexing, the samples were incubated at 37°C for 30 min. The supernatant was removed and the precipitate was washed with 100 µl PBS. Then, 50 µl of hybridization buffer and 10 µl of the appropriate probes were added. Hybridization was conducted in a humid chamber at a temperature and times specific to the molecular probes applied (Table 2). In order to determine the total number of microorganisms instead of the probe reagent was added 100 µl DAPI (4',6'-diamidino-2-phenylindole). After hybridization, the samples were centrifuged, the supernatant was removed. The amount of 150 µl of wash buffer was added followed by incubation for 30 min at a temperature suitable for the proper probe. The precipitate was washed in 100 µl PBS, centrifuged (14000 rpm, 5 min, 4°C) by the removal of supernatant. The precipitate was suspended in 50 µl PBS and stored at a temperature of 4°C until preparation of microscope slides.

Microscopic observations were performed using Eclipse E-400 fluorescence microscope (Nikon, Japan) combined with COHU 4910 camera (Cohu Inc., USA) and coupled with a computer. Measurement of the amount of microbial cells was performed using NIS Elements BR version 3.2 computer program (Nikon, Japan).

Determination of prebiotic index (PI). Prebiotic fermentation of resistant dextrins were analyzed using quantitative equation (prebiotic index – PI). The PI equation is based on the changes in key bacterial groups during fermentation. The bacterial groups incorporated into this PI equation were bifidobacteria, lactobacilli, clostridia and bacteroides. The equation assumes that an increase in the populations of bifidobacteria and/or lactobacilli is a positive effect while an increase in bacteroides and clostridia is negative (Palfframan et al., 2003).

The PI equation is described below:

$$ PI = \frac{(Bif/Total) - (Bac/Total) + (Lac/Total)}{(Clos/Total)} \leq 0.05 \) where PI is prebiotic index; Bif, bifidobacterial numbers at sample time/numbers at inoculation; Bac, bacteroides numbers at sample time/numbers at inoculation; Lac, lactobacilli numbers at sample time/numbers at inoculation; Clos, clostridia numbers at sample time/numbers at inoculation; Total, total bacteria numbers at sample time/numbers at inoculation.

Statistical Analysis. The data were analyzed using the STATISTICA 8.0 software package (Statsoft Co., Krakow, Poland). A two-way analysis of variance (ANOVA) was applied to assess the effects of diets on the intestinal microflora and development indicators. If the analysis revealed a significant interaction or that dietary factors had a significant influence (p≤0.05), the differences among the individual groups were then analyzed with Duncan’s multiple range post hoc test (p≤0.05).

RESULTS AND DISCUSSION

When used in rat diet, resistant dextrin had no effect on primary growth indicators (final body weight, body weight gain, dietary consumption) or the mass of the small intestine with digesta and the colonic tissue (Table 3). However, the addition of dextrin to a diet led to a significantly increase in the relative caecal tissue weight (Table 3), possibly indicating physiological response to increased digesta accumulation in the large intestine. Dextrins had the effect of lowering of the pH and the concentration of ammonia within the caecal contents. One may suppose that this was due to beneficial changes in microflora composition including reduction in the activity of proteolytic bacteria as shown in further studies.

Microbial analysis of rat feces revealed a statistically significant increase in the counts of Lactobacillus (Fig. 1) and Bifidobacterium (Fig. 2) strains after 3 and 4 weeks of administration of resistant dextrin-supplemented diet as compared to the control group. The increase in the counts of these strains was also observed within the caecal contents, with statistically significant differences being observed only in case of Lactobacillus strains. An reverse correlation was observed for the fecal and caecal content of Clostridium (Fig. 3) and Bacteroides (Fig. 4) strains. A statistically significant reduction in the Clostridium counts in the dextrin group as compared to the control group.
was observed in the feces of rats after 2 and 4 weeks of diet administration and in the cecal contents; reduction in *Bacteroides* counts was observed in the feces after 4 weeks of diet administration. The increase in beneficial bacteria of genus *Lactobacillus* and *Bifidobacterium* may be an evidence of the beneficial effect of resistant dextrins on modulation of intestinal microflora in young rats. Resistant dextrin-supplemented diet was also found to have no effect on the total bacterial counts which were comparable in all study groups.

The obtained results were consistent with those obtained by Klessen *et al.* (1997) who determined the effect of the diet supplemented with resistant starch RS1 (physically unavailable for digestive enzymes) and RS2 (native enzyme-resistant starch) on the intestinal microflora of rats. Increased counts of *Bifidobacterium* strains were observed in the feces of rats fed with both RS1, and RS2-supplemented diets while increased counts of *Lactobacillus* strains were observed only in rats fed with RS2-supplemented diet. The authors also determined a reduction in the counts of *Bacteroides* strains in the feces of rats, albeit only in the RS1-supplemented diet group. On the other hand, Hong *et al.* (2005) observed increased *Bifidobacterium* counts in the feces of mice fed with resistant starch RS3 (retrograded starch resistant to amylolytic enzymes).

Berard and coworkers (2009) determined the effect of the resistant dextrin (maltodextrin)-containing commercial product Nutriose® on the intestinal microflora in humans. The study included the analysis of the effect of ingestion Nutriose® at the doses of 8, 10, 15 or 20 g/day for 14 days as well as at the dose of 30 and 45 g/day for 35 days. Fourteen days of administration of the product at 8 and 10 g/day resulted in an increase in *Bacteroides* counts as compared to the control group. In case of the dose of 45 g/day, increase in *Lactobacillus* counts was observed. On the other hand, the dose of 15 g/day (administered for 14 days) reduced the counts of *Clostridium perfringens*. Similar correlations were observed by Pasman *et al.* (2006) in other studies involving the use of Nutriose®.

The studies led to a conclusion that supplementation of diet with resistant dextrins has a positive effect on the composition of intestinal microflora in rats. It increases the counts of *Bifidobacterium* and *Lactobacillus* strains both in the feces and in the small intestine. Moreover, it reduced the counts of *Clostridium* and *Bacteroides* strains. The prebiotic index (PI) was calculated to confirm the
Table 4. The influence of dextrin on Prebiotic Index.

<table>
<thead>
<tr>
<th>Group</th>
<th>Faecal</th>
<th>Cecum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st week</td>
<td>2nd week</td>
</tr>
<tr>
<td>Control</td>
<td>0.307</td>
<td>0.264a</td>
</tr>
<tr>
<td>Starch</td>
<td>0.312</td>
<td>0.319a</td>
</tr>
<tr>
<td>Dextrin</td>
<td>0.397</td>
<td>0.326a</td>
</tr>
</tbody>
</table>

The results displayed are the mean three independent experiments. Values not sharing the same superscript letters within a column are significantly different at \(p \leq 0.05\).

beneficial effect of resistant dextrins on the intestinal microflora (Table 4). PI values were shown to be the highest in the feces of rats fed resistant dextrin-supplemented diet as compared to the control group and the starch diet group.

The calculated PI values for dextrin were higher than those reported by Olano-Martin \textit{et al.} (2003) for pectin and pectic-oligosaccharides or by Kordyl (2010) for inulin and oligosaccharides which shows that CA-dextrin may act as a prebiotic substance.

Acknowledgments

The study was supported by the Polish Ministry of Science and Higher Education, Grant No. N N312 3353 39.

REFERENCES

