The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic *Escherichia coli* strains’ susceptibility to cephalothin*

Łukasz Lechowicz1,2, Mariusz Urbaniak2, Wioletta Adamus-Białek3 and Wiesław Kac1

1Department of Microbiology, Jan Kochanowski University, Kielce, Poland; 2Organic Chemistry Division, Jan Kochanowski University, Kielce, Poland; 3Independent Department of Environmental Protection and Modeling, Jan Kochanowski University, Kielce, Poland

Background & Aims: Infrared spectroscopy is an increasingly common method for bacterial strains’ testing. For the analysis of bacterial IR spectra, advanced mathematical methods such as artificial neural networks must be used. The combination of these two methods has been previously used to analyze taxonomic affiliation of bacteria. The aim of this study was the classification of *Escherichia coli* strains in terms of susceptibility/resistance to cephalothin on the basis of their infrared spectra. The infrared spectra of 109 uropathogenic *E. coli* strains were measured. These data are used for classification of *E. coli* strains by using designed artificial neural networks.

Results: The most efficient artificial neural networks classify the *E. coli* sensitive/resistant strains with an error of 5%.

Conclusions: Bacteria can be classified in terms of their antibiotic susceptibility by using infrared spectroscopy and artificial neural networks.

Key words: infrared spectroscopy, artificial neural network, uropathogenic *Escherichia coli*, antibiotic resistance

Received: 31 October, 2013; revised: 12 December, 2013; accepted: 20 December, 2013; available on-line: 30 December, 2013

INTRODUCTION

Multi-drug resistant strains are one of the main problems in the bacterial infection treatment. Cephalothin is a semisynthetic antibiotic belonging to the first generation of cephalosporins. It is used as a therapeutic agent in infections caused by Gram-negative bacteria — *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae* (Empel et al., 2008). Cephalosporins, including cephalothin, are inactivated by ESBL β-lactamases i.e. AmpC, TEM, SVH or MBL (Prabhu et al., 2011). Percentage of uropathogenic *E. coli* strains resistant to first class cephalosporins is still increasing (Kot et al., 2010). Drug-resistant strains are isolated from environmental samples as well as from clinical samples.

There are several techniques for determining the susceptibility of bacteria to antibiotics. Most of the techniques (e.g. disc diffusion method and E-test) are based on the cultivation of bacteria in the presence of an antibiotic. It is also possible to detect genes for resistance to antibiotics by using PCR (Empel et al., 2008). These methods, however, require time and are labor intensive.

Traditional methods of bacterial phenotypic assessment i.e. antibiotics resistance/sensitivities are based on growing bacterial cultures on specific media (e.g. Christensen medium). Strains are differentiated on the basis of the appearance of bacterial colonies and micro-
neurons is analogous to the construction of a biological neuron (Fig. 2a). There are several types of neural networks, differing in arrangement of artificial neurons. Frequently used ANNs are composed of one neuron layer for data input, two or three layers of hidden neurons and a neuron layer leading-out data from the network (Fig. 2b). ANNs have found many applications in the analysis of various types of data. The learning process of ANN is based on presentation of the data (learning set) to network. After learning, the network optimizes its structure and thereby increases the number of correct classifications. The main limitation of this technique is the need to have a large number of learning data. An increase in the complexity of the network makes it necessary to increase the size of the learning set. To solve very complex problems, very complex neuronal networks need to be applied and thus the learning set must count thousands of observations.

The aim of this study was the use of IR spectroscopy and artificial neural networks to differentiate cephalothin (cephalosporine) resistant/sensitive uropathogenic *E. coli* strains.

MATERIALS AND METHODS

The bacterial strains. 109 uropathogenic *E. coli* strains were isolated from urine samples of hospitalized patients suffering from urinary tract infection, from the wards of hospital No. 2, Medical University of Lodz, Poland, in the years 2006 to 2008. Following isolation, the strains were stored at –80°C until the tests were carried out. Number of passages between the isolation and performance of the test was not more than five. Bacteria were grown at 37°C for 24 hours. After this time the bacteria were stored at 4°C.

Figure 1. An example of infrared spectrum of uropathogenic *E. coli* strain.

Figure 2. Construction of an artificial neuron (a) and the structure of an artificial neural network (b).
Designation of drug resistant strains. The drug resistance of *E. coli* strains was determined by a susceptibility test (ATB UR5, bioMerieux) at the Faculty of Laboratory Diagnostics and Clinical Biochemistry, hospital No. 2, Medical University of Lodz, Poland (Adamus-Bialek et al., 2009; Adamus-Bialek et al., 2013).

Measurement of IR spectra. Bacterial strains were cultured on LB agar medium at 37ºC for 24 hours. A single bacterial colony was very carefully taken from the Petri dish using a disposable sterile pipette tip, just before the IR spectrum measurement. The bacterial mass was evenly distributed over the entire surface of the crystal. Bacterial colony was scanned 25 times, and the final result was averaged. For each bacterial strain, 10 colonies were harvested. After IR spectrum measurement, the bacterial mass was removed using acetone and 70% isopropanol. Residual solvents were removed with a sterile double-distilled water, and the crystal was dried. IR spectrum was measured in the range 4000–650 cm⁻¹ with an interval of 1 cm⁻¹. The resulting spectrum of bacteria was then subjected to a pre-treatment: the baseline fixed, calculation of the first derivative, scaling to the range 0–1.

Designing a neural network. For creating a neural network Statistica 10 was used. The calculations were based on data from 1090 bacterial IR spectra. The IR spectra were randomly divided into independent subsets: learning subset (70% of all IR spectra), testing subset (15% of all IR spectra) and validation subset (15% of all IR spectra).

RESULTS

Distribution of bacterial strains due to the susceptibility to cephalothin was as follows: 51% of the bacterial strains were sensitive to cephalothin, 27% of the bacterial strains were resistant to cephalothin, and the remaining 22% were displaying intermediate resistance to cephalothin (Fig. 3a) (Adamus-Bialek et al., 2009; Adamus-Bialek et al., 2013). Unprocessed IR spectra of different bacterial strains were similar. However, after conversion of original spectra to the first derivative some differences could be observed. Especially large accumulation of the differences may be observed in the fragment 1500–1000 cm⁻¹ which corresponds to windows W3, W4 (Fig. 4a, b). Nonetheless these differences are so slight and unstable that the differentiation of resistant/sensitive of *E. coli* on their basis is not possible. The wavenumbers related to cephalothin resistance have been identified by using statistical methods. Advanced methods of multivariate data processing (eg. PCA, CA) did not allow to differentiate the *E. coli* strains (data not shown). We designed a set of artificial neural network to classify the tested bacteria based on the selected wavenumbers. In this study two types of neural networks were used: Multilayer Perceptron (MLP) and Radial Basis Function networks (RBF). The individual networks differed in the number of neurons in the hidden layer and the type of the activation function. The quality of the network was evaluated on the basis of the number of correct classification in the validation subset, and in the second place, the network complexity. The best results were obtained with the MLP networks (Table 1). The performance of RBF networks was significantly below expectations (Table 2). The best designed ANN obtained 83.43% of correctly classified strains (or correct answers) in the validating set (Table 1). This result is decidedly unsatisfactory. However, after examining the responses distribution in the validation subset, we decided to use MLP networks.
set it turns out that the percentage of correctly classified strains for cephalothin-sensitive strains was about 95%. For resistant and intermediate strains, the ANN obtained significantly worse results — 67.5% and 77% of correctly classified strains, respectively (Table 3). It is a well-known phenomenon of ANN functioning. Some times ANNs demonstrate a capacity to recognize one type of pattern (e.g. sensitive strains) and at the same time do not recognize the other patterns (e.g. intermediate and resistant strains). This particular network showed some predisposition for detecting susceptibility to cephalothin. In the first experiment, networks were designed for classifying bacterial strains into three types of antibi otic action — resistant, intermediate and sensitive. However, ANNs performed better when only two types of strains were analyzed. Therefore, in the next experiment, intermediate and resistant strains were combined into one group called “non-sensitive strains”. The new distribution of strains is shown in Fig. 3b. In this case, the topology of the ANNs was changed — networks were constructed with 30 input neurons, 9 neurons in the hidden layer and two outputs. For data prepared this way, neural networks obtained slightly different results. Also, in this case MLP networks achieved the best results (Table 4). In the validation set, the best network obtained 92.64% of correctly classified strains. For cephalothin-sensitive strains the number of correct answers was 93.23%. It is therefore a slightly worse result than that obtained in the first experiment. However, for strains grouped in the category “non-sensitive strains” percent-

| Table 1. Multilayer perceptrons (MLP) for classifying bacterial strains into 3 groups. |
ID	Topology	Quality of the network	Activation function				
ID	Topology	Training (%)	Testing (%)	Validating (%)	Error function	Hidden neurons	Output neurons
1	MLP 30-8-3	89.66	79.14	83.43	Ent	Log	Softmax
2	MLP 30-10-3	94.11	80.37	79.75	Ent	Log	Softmax
3	MLP 30-9-3	89.66	77.30	76.53	Ent	Log	Softmax
4	MLP 30-9-3	91.75	79.14	77.91	Ent	Log	Softmax
5	MLP 30-8-3	86.78	74.85	77.91	Ent	Log	Softmax
6	MLP 30-9-3	89.66	79.14	77.30	Ent	Log	Softmax
7	MLP 30-7-3	90.84	77.91	77.30	Ent	Log	Softmax
8	MLP 30-9-3	81.94	73.00	76.69	Ent	Log	Softmax
9	MLP 30-6-3	85.73	78.53	76.69	Ent	Log	Softmax

Abbreviations: Tanh — hyperbolic tangent, Log — logistic function, Ent — entropy, Softmax — softmax function.

| Table 2. Radial basis function networks (RBF) for classifying bacterial strains into 3 groups. |
ID	Topology	Quality of the network	Activation function				
ID	Topology	Training (%)	Testing (%)	Validating (%)	Error function	Hidden neurons	Output neurons
1	RBF 30-10-3	52.75	60.12	58.90	SOS	Gaussian	Linear
2	RBF 30-10-3	53.01	58.28	58.28	Ent	Gaussian	Softmax
3	RBF 30-10-3	52.88	60.12	57.67	SOS	Gaussian	Linear
4	RBF 30-10-3	56.68	56.44	57.06	Ent	Gaussian	Softmax
5	RBF 30-10-3	51.70	56.44	56.44	Ent	Gaussian	Softmax
6	RBF 30-10-3	54.19	58.90	57.90	SOS	Gaussian	Linear
7	RBF 30-10-3	50.92	60.74	55.83	Ent	Gaussian	Softmax
8	RBF 30-10-3	52.75	55.83	55.83	Ent	Gaussian	Softmax
9	RBF 30-10-3	53.40	58.90	55.83	SOS	Gaussian	Linear
10	RBF 30-10-3	53.27	59.51	55.21	SOS	Gaussian	Linear

Abbreviations: Gaussian — Gaussian function, Softmax — softmax function, Linear — linear function, SOS — sum of squares, Ent — entropy.

| Table 3. Compatibility of the results obtained from artificial neural network (see Table 1. ID 1) used for E. coli classification with cephalothin susceptibility testing for the validation subset. |
Cephalothin susceptibility testing	Resistant strains	Intermediate strains	Sensitive strains
Correctly classified strains	67.5%	77%	95%
Incorrectly classified strains	32.5%	23%	5%

FTIR in detection of drug resistant E. coli strains

age of correct classification was 91.9%, which should be considered as a good result. Also in this case, the RBF network obtained validation of 64% which was not satisfactory (Table 5).

DISCUSSION

One of the main problems in microbial diagnostics is labor and time-consuming drug-resistance testing. In case of a life-threatening bacterial infection (e.g. during systemic inflammatory response) it is necessary to ensure proper antibiotic treatment within a few hours of onset of the symptoms. Through the use of modern chemometric methods it will be possible in the future to rapidly determine drug susceptibility of bacteria within several hours. Among such methods should be mentioned FTIR and MALDI-TOF. So far, there have been reports about the possibility of using IR spectroscopy and PCA in the study of imipenem-resistance of *Pseudomonas* sp (Sockalingum et al., 1997). No attempt was made to use artificial neural networks in such studies. A method of storing information of drug resistance in the IR spectrum of bacteria is not clear. There are several mechanisms for antibiotic resistance: the presence of specific enzymes (e.g. β-lactamase), transmembrane proteins and others. Possibly, the presence of these cellular components is reflected in the IR spectrum of bacteria. These characteristics are not concentrated in a single fragment of the spectrum (or one peak), but dispersed over the whole length of the spectrum. *E. coli* strains may differ from each other in terms of genetic and metabolic characteristics. This makes the problem of drug-resistant strain identification very complex. The use of mathematical methods (e.g. CA, PCA) may not provide the expected validation and correct results. Differences in the phenotype of *E. coli* can cause distortion of the IR spectrum and obliteration of search features. It can be compared in the presence of random noise in the IR spectrum. One of the characteristics of neural networks is their resistance to certain distortions of data. This makes it possible to better recognize the patterns in the analyzed data. Based on these characteristics it can be concluded that the ANNs are one of the methods of choice for the analysis of the bacterial IR spectra.

<p>| Table 4. Multilayer perceptrons (MLP) for classifying bacterial strains into 2 groups. |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Topology</th>
<th>Quality of the network</th>
<th>Activation function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training (%) Testing (%) Validating (%)</td>
<td>Error function</td>
</tr>
<tr>
<td>1</td>
<td>MLP 30-9-2</td>
<td>98.82 90.80 92.64</td>
<td>SOS</td>
</tr>
<tr>
<td>2</td>
<td>MLP 30-9-2</td>
<td>98.04 92.64 92.02</td>
<td>SOS</td>
</tr>
<tr>
<td>3</td>
<td>MLP 30-9-2</td>
<td>95.29 92.02 91.41</td>
<td>SOS</td>
</tr>
<tr>
<td>4</td>
<td>MLP 30-8-2</td>
<td>97.38 92.64 91.41</td>
<td>SOS</td>
</tr>
<tr>
<td>5</td>
<td>MLP 30-10-2</td>
<td>97.91 90.80 91.41</td>
<td>SOS</td>
</tr>
<tr>
<td>6</td>
<td>MLP 30-8-2</td>
<td>97.25 90.80 90.80</td>
<td>SOS</td>
</tr>
<tr>
<td>7</td>
<td>MLP 30-8-2</td>
<td>97.51 92.02 90.80</td>
<td>SOS</td>
</tr>
<tr>
<td>8</td>
<td>MLP 30-10-2</td>
<td>96.99 90.80 90.80</td>
<td>SOS</td>
</tr>
<tr>
<td>9</td>
<td>MLP 30-10-2</td>
<td>98.69 90.80 90.80</td>
<td>SOS</td>
</tr>
<tr>
<td>10</td>
<td>MLP 30-10-2</td>
<td>95.81 88.96 90.80</td>
<td>SOS</td>
</tr>
</tbody>
</table>

Table 5. Radial basis function networks (RBF) for classifying bacterial strains into 2 groups.

<table>
<thead>
<tr>
<th>ID</th>
<th>Topology</th>
<th>Quality of the network</th>
<th>Activation function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training (%) Testing (%) Validating (%)</td>
<td>Error function</td>
</tr>
<tr>
<td>1</td>
<td>RBF 30-3-2</td>
<td>59.82 65.64 65.03</td>
<td>Ent</td>
</tr>
<tr>
<td>2</td>
<td>RBF 30-3-2</td>
<td>63.22 63.80 65.03</td>
<td>Ent</td>
</tr>
<tr>
<td>3</td>
<td>RBF 30-3-2</td>
<td>61.52 65.64 64.42</td>
<td>SOS</td>
</tr>
<tr>
<td>4</td>
<td>RBF 30-3-2</td>
<td>60.21 61.96 64.42</td>
<td>Ent</td>
</tr>
<tr>
<td>5</td>
<td>RBF 30-3-2</td>
<td>58.12 57.06 64.42</td>
<td>Ent</td>
</tr>
<tr>
<td>6</td>
<td>RBF 30-3-2</td>
<td>59.95 57.67 64.42</td>
<td>Ent</td>
</tr>
<tr>
<td>7</td>
<td>RBF 30-30-2</td>
<td>57.98 58.90 63.80</td>
<td>Ent</td>
</tr>
<tr>
<td>8</td>
<td>RBF 30-3-2</td>
<td>57.07 57.67 63.80</td>
<td>Ent</td>
</tr>
<tr>
<td>9</td>
<td>RBF 30-3-2</td>
<td>65.18 65.64 63.80</td>
<td>SOS</td>
</tr>
<tr>
<td>10</td>
<td>RBF 30-3-2</td>
<td>59.42 60.74 63.80</td>
<td>SOS</td>
</tr>
</tbody>
</table>

Abbreviations: Gaussa — Gaussian function, Softmax — softmax function, Linear — linear function, SOS — sum of squares, Ent — entropy.
CONCLUSIONS

The combination of infrared spectroscopy (ATR/FTIR) of bacterial samples and advanced methods of data analysis (ANNs) may allow rapid differentiation of bacterial strains in terms of their antibiotic resistance/sensitivity.

Acknowledgements

This project was financed from the funds of the National Science Center allocated on the basis of the decision number DEC-2012/07/N/NZ7/01187.

REFERENCES

