Clastogenic and toxicological assessment of cashew (Anacardium occidentale) nut bark extracts in Wistar rats

Solomon E. Owumi, John O Fatoki, Michael A. Gbadegesin and Oyeronke A. Odunola

Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria

INTRODUCTION

Cashew shell oil (CSO) is the main by-product of the cashew industry and makes up to 20–25% of the nut by weight (Ojeh, 1981). CSO has a variety of uses including friction modifying material, floor tiles, laminate resins, baking enamels, adhesives, paints, plastic industries, wood preservation, molluscicide and for medical purposes (Ojeh, 1981). Chemical components consist of anacardic acid (90%) and cardol (10%) (Trosko, 2003). The former is an orthohydroxy benzoic acid with an unsaturated side chain and the latter is a phenol. Commercially available CSO has been reported to be mutagenic (Polasa & Rukmini, 1987). Epidemiological studies have shown that submucous fibrosis, an insidious chronic disease that has malignant potential, is high among cashew workers and the CSO may have a positive role in the etiology of oral submucous fibrosis (Varghese et al., 1986). CSO is reported to produce contact dermatitis and eczematous dermatitis (Downing 1940; Aber, 1983; Marks et al., 1984).

Poor occupational safety practice during CSO production, shellling of kernels exposes workers to raw or processed shell oil through dermal, nasal and oral routes. Allergic contact dermatitis has been reported in people following occupational exposure to the shell oil or the nut (Ratner et al., 1974; Downing, 1940). It has been reported that children exhibited contact dermatitis having come in contact with toy burros made from cashew nuts (Orris, 1958). The processed kernels sold in stores as cashew nut in some cases may be contaminated with CSO during production. As such, this may be a means of chronic exposure when consumed regularly and should not be overlooked. Raw cashew nut oil is used as a direct tool for inscribing bodily tattoo amongst other methods in Nigeria, without consideration for its toxic consequences. However, this practice has been going on for hundreds of years and as thus, it is considered as safe. To our knowledge there are no studies in the literature that have investigated this practice with the standpoint of long-term health consequences. Earlier report (Hecker et al., 1984) indicated that CSO has inflammatory potential when applied on rat skin. Hazards to human health due to acute exposure to CSO as a tattooing tool need to be studied in order to know the appropriate precautions that should be taken, and the screening of these phytochemicals is essential to understand their functionality (George & Kuttan, 1997).

The present study was therefore carried out to investigate the toxicological and clastogenic potency of CSO in male Wistar rats exposed to CSO through dermal route.

MATERIALS AND METHODS

Chemicals. Alanine amino transferase (ALT), aspartate amino transferase (AST) and gamma glutamyl trans-

Abbreviations: ANOVA, analysis of variance; ALT, alanine amino transferase; AST, aspartate amino transferase and γ-GT, gamma glutamyl transferase cells/mm²; CSO, cashew shell oil; i.p., intraperitoneal; mPCEs, micronucleated polychromatic erythrocytes; SPSS, Statistical Package for Social Sciences.
Blood was collected from each rat and serum was prepared after the blood has been allowed to clot at room temperature for about two hours. The clotted blood was centrifuged (3000 × g, 4°C for 10 minutes) and the supernatant was transferred into clean tubes stored at −20°C until required. Serum level of hepatic transaminases: γ-GT was assayed in the serum by using the reconstituted reagent kit following standard method (Szasz, 1969). ALT and AST activities were also assayed in the serum using the reagent kits according to the method of Reitman and Frankel (Reitman & Frankel, 1957).

Histopathology. Harvested livers were rinsed in phosphate buffered saline, blotted dry on filter paper and weighed. Sections of the liver were fixed in 4% p-formaldehyde processed and embedded in paraffin. The formalin fixed, paraffin embedded tissue was further sectioned and layered onto glass slides which was stained with haematoxylin–eosin dye and finally read under a microscope by a Veterinary pathologist.

Hepatic cells/mm² count. Slide preparations from liver histology above were used to determine the number of cells/mm² using a Nikon light microscope as previously described (Hochegger et al., 2005).

Data analysis. The results were expressed as mean ± Standard Deviation. Differences between the groups were analyzed by one-way analysis of variance (ANOVA) with the aid of Statistical Package for Social Sciences (SPSS) software, SPSS Inc., Chicago, Standard version 10.0.1. P-values<0.05 were considered statistically significant for differences in means.

RESULTS

Figure 1 shows local tattoo inscribed on the skins of individual using CSO oil. This is a well-known and common practice dating back to several hundred years, as such it is considered safe without recourse to the short and long term health effects that may occur. Sections of rat skin were depilated and CSO applied topically as shown in Fig. 2.
Table 1. Body and Organ weight and weight change in rat topically exposed to CSO for 6 weeks.

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial body weight (g)</th>
<th>Final body weight (g)</th>
<th>Weight change (%)</th>
<th>Liver weight (g)</th>
<th>Relative liver weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (I)</td>
<td>107.0±24.65</td>
<td>130.0±24.50</td>
<td>21.49</td>
<td>2.98±0.79</td>
<td>2.40±0.80</td>
</tr>
<tr>
<td>25% CSO (II)</td>
<td>120.0±20.92</td>
<td>142.0±13.03</td>
<td>18.33</td>
<td>4.28±0.41<sup>a</sup></td>
<td>3.02±0.28</td>
</tr>
<tr>
<td>50% CSO (III)</td>
<td>118.0±15.62</td>
<td>126.0±16.73</td>
<td>6.77</td>
<td>3.73±0.16<sup>b</sup></td>
<td>3.0±0.35</td>
</tr>
<tr>
<td>100% CSO (IV)</td>
<td>110.0±13.69</td>
<td>76.0±5.44</td>
<td>−30.90</td>
<td>3.48±0.46<sup>c</sup></td>
<td>4.4±0.93<sup>c</sup></td>
</tr>
</tbody>
</table>

^a=mean difference is statistically significant when compared with group I (Control) (<p>0.05); ^b=mean difference is statistically significant when compared with group II (<p>0.05); ^c=mean difference is statistically significant when compared with group III (<p>0.05). Results are expressed as means ± S.D., n=5.

Table 2. CSO-induced micronucleated polychromatic erythrocytes (mPCEs) in rat bone marrow cells, after topical exposure for 6 weeks.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>mPCEs/1000 PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (I)</td>
<td>1.00±0.71</td>
</tr>
<tr>
<td>25% CSO (II)</td>
<td>1.60±0.82</td>
</tr>
<tr>
<td>50% CSO (III)</td>
<td>1.80±0.27</td>
</tr>
<tr>
<td>100% CSO (IV)</td>
<td>2.20±0.76<sup>a</sup></td>
</tr>
</tbody>
</table>

^a=mean difference is statistically significant when compared with group I (<p>0.05). Results are expressed as mean ± S.D., n=5.

Figure 2. Representative model of rats showing depilated sections of rat skin before application of CSO (A) and after exposure of CSO (B) for 6 weeks.

Table 3. Effect of CSO treatment on hepatic transaminases activities in serum of rats treated with CSO for 6 weeks.

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>GGT (IU/L)</th>
<th>AST (IU/L)</th>
<th>ALT (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (I)</td>
<td>1.16±0.00</td>
<td>31.67±8.08</td>
<td>5.33±2.31</td>
</tr>
<tr>
<td>25% CSO (II)</td>
<td>2.32±0.00</td>
<td>50.33±2.89</td>
<td>6.67±2.31<sup>a</sup></td>
</tr>
<tr>
<td>50% CSO (III)</td>
<td>2.70±1.34</td>
<td>56.67±4.06</td>
<td>13.60±2.87<sup>b</sup></td>
</tr>
<tr>
<td>100% CSO (IV)</td>
<td>5.40±2.41<sup>c</sup></td>
<td>66.67±19.66<sup>c</sup></td>
<td>38.67±4.51<sup>c</sup></td>
</tr>
</tbody>
</table>

^a=mean difference is statistically significant when compared with group I (<p>0.05); ^b=mean difference is statistically significant when compared with group II (<p>0.05); ^c=mean difference is statistically significant when compared with group III (<p>0.05). Results are expressed as means ± S.D., n=5.

GGT=gamma glutamyl transferase, AST=aspartate amino transferase and ALT=alanine amino transferase.

Effect of topical administration of cashew shell oil on the body and liver weight of rats

Table 1, shows the initial, terminal body and organ weights of rats treated with CSO and the control group. Body weight increased in the negative control by about 21.5%. Treatment with CSO (groups I–III) caused a progressive reduction in body weight increase. In fact, there was a dramatic loss of weight in the group of rats treated with 100% CSO (group IV). This group recorded about 80% fold relative to the negative control group.

Hepatotoxicity following repeated topical administration of cashew shell oil in Wistar rats

Result from the assessment of hepatic transaminases in serum of rat exposed to cashew shell oil is presented in Table 3. Repeated topical administration of CSO resulted in elevated serum transaminases (γ-GT, ALT and AST), markers of hepatotoxicity in the treated animals. Treatment with 100% CSO resulted in significant (<p>0.05) elevated serum levels of γ-GT (greater than fivefold increase was observed) compared to control animals (group I). Similarly at 25 and 50% CSO serum γ-GT also increased but to a lesser extent than 100% CSO. Serum AST was elevated at 25, 50 and 100% CSO administration (group II–IV). Serum levels of ALT in...
Histological changes in rat's liver cells following topical administration of CSO

Histological assessment of treated rat (group II–IV) liver relative to untreated rats (group I) corroborated the findings of serum transaminases (Fig. 3A–D). There was a disruption of liver architecture and an infiltration of mononuclear cells in the treated groups. The control liver appears to be cellular and structurally normal (A). Treatments with 25% CSO resulted in moderate sinusoidal congestion and mononuclear cellular infiltration (B). In contrast, acute coagulation necrosis of the centrilobular zones, cellular infiltration and moderate portal congestion, with fibroplasia of the periportal region (black arrows) and (D) liver sections of rats treated with (100% CSO) presented with diffused portal congestion and periportal cellular infiltration by mononuclear cell (black arrows). H&E stained; 400X magnification.

Treatment with CSO increases hepatic cell counts

The results presented in Table 4 show the cells/mm² in rat liver as a measure of hepatocyte proliferation when exposed to CSO. There was a dose dependent increase in hepatocyte number in treated groups (II–IV). The observed increases were statistically significant ($p<0.05$) compared with the control group. Relative to control, treatment with CSO at 25% (group II) resulted in the highest number of cells/mm² in the rat liver.

DISCUSSION

Skin tattooing is a worldwide phenomenon that is manifested from the ordinary to outrageous designs adorning all body types, skin colour etc.

Local tattooing in Nigeria which has existed for hundreds of years serves as a mark of identification, charms against wild animals and medicinal implants rather than a fashionable addition to enhance skin, project beauty or making of a socio political statement. Local tattooing in Nigeria can be inscribed on the skin using different kinds of tools and means, including the use of raw CSO, which may be toxic and have long-term health consequence on topical exposure. Here, we report findings on the toxicological and clastogenic assessment of CSO in rats exposed to CSO for six weeks. However, we used a conservative approach (increasing concentration of CSO (25–100%) in corn oil) to avoid excessive exposure to CSO that may result in undesirable outcome, all animals survived during the course of the study. In addition, relative to size, the extent of tattoos inscribed on individuals and long term occupational exposure, the amount of CSO used in humans is much higher than those studied here. Making our findings even more so relevant for CSO toxicological implications and the need for this health concern to be addressed. The choice of corn oil is a standard excipient that serves as a carrier vehicle in toxicological biomedical studies. Its application for this purpose is common in the scientific literature (Yuan et al., 1992). In addition, corn oil is used in cooking and consumed as well in food. In case corn oil was supposed to introduce any deleterious effect, a control group (I) was also included in the study exposed to corn oil alone for comparison with the CSO treated groups (II–IV).

Topical exposure to CSO for six weeks did not produce considerable loss in body weight at 25 and 50% CSO doses compared to the negative control. However, the percentage increases in mean body weights of treated animals were lower than observation made with the control group (Table 1). On the other hand, at 100% CSO there was an appreciable loss in body weight (>30%) in rats exposed. It appears that CSO at less than 50% have less overall systemic effect on the animal, whereas at 100% CSO exposure this appears not to be the case. However, there was an overall, dose dependent increase in liver weight and relative liver weight of animals treated with CSO (Group II–IV) (Table 1). This may have implication in the increased number of hepatocytes assessed in the liver. We recorded the highest mean liver weight in group II (given 25% CSO) and the highest number of cells/mm².

Clastogenic damage to chromosomes and subsequent recombination plays a role in the onset of various cancers. A predictive index for evaluating the carcinogenic potential of environmental and occupational chemical exposure is the bone marrow micronucleus assay (Celik 2005; Bonassi, 2006). Exposure to CSO induced the formation of mPCEs in the bone marrow cells of rats in a dose dependent manner (Table 2). Group IV animals (treated with 100% CSO) showed a significant mean difference ($p<0.05$) in mPCEs formation, compared with the control (group I). This finding suggests that CSO is
elastogenic in rats with the likelihood of similar implication on human exposure to CSO.

The liver is the major target organ for chemically induced injuries. Several important factors are known to contribute to liver susceptibility. Traditional marker of hepatic injury, diseases and toxicity is the raised level hepatic transaminases (γ-GT, AST and ALT) in serum. Such elevations are an indicator of liver dysfunction (Ideo et al., 1972; Lum & Gambino, 1972). Our findings indicated that repeated topical exposure to CSO resulted in an increase in mean γ-GT, AST and ALT in the serum of treated animals significantly (p<0.05) (Table 3). These increases were more pronounced in Group IV animals treated with 100% CSO, and compared to control animals (group I) suggest that exposure to CSO can be hepatotoxic, damaged hepatocytes and result in the release of hepatic enzymes into the blood. At 25 and 50% CSO concentration there was also an appreciable increase in serum levels of hepatic transaminases.

There was an increase in the number of cell/mm² in the rat liver in animal’s topically exposed to different concentration of CSO. The observed increase occurred dose dependently (II<III<IV) and was statistically significant (p<0.05) compared to the control group. It can be inferred from this observation that topical exposure to CSO may induce hepatocytes proliferation. We, however, did not examine CSO effect on skin cell proliferation but rather gross morphological changes that appear in the forms of increased skin trauma, disruption of membrane integrity (wound) and scars on the skin. This observation correlated with previous findings (Argyris, 1989), who also observed wound and physical trauma in rats treated with CSO (Argyris, 1989). Overall, this finding suggested that topical exposure to CSO is disruptive to the skin and can promote hepatocyte proliferation, with implication in carcinogenesis. In addition, Group IV animals exposed to 100% CSO (without any dilution with corn oil) presented with the highest number of cell proliferation (Table 4). Taken together it can be concluded that exposure to CSO could be toxic to hepatocytes, hepatocyte proliferation increases, and may as well act as a potent elastogenic agent. In addition, exposure to CSO compromises skin integrity and causes trauma in exposed region of the skin. It is therefore suggested that the use of CSO as a tattooing agent should be highly discouraged and the adequate protective measures need to be put in place for occupational health safety, especially for those directly involved in cashew nut processing industries. Further long-term studies from 6–12 months are needed to be conducted in order to fully understand the effect of long-term chronic CSO exposure, in particular on workers in CSO and Cashew nuts processing industries.

Acknowledgement

This work was completely supported by the personal contributions of the authors.

REFERENCES

Polasa, K., and C. Rukmini. 1987. Mutagenicity tests of cashew nut shell liquid, rice-bran oil and other vegetable oils using the Salmo

Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transami

Varghese IR, Rajendran CK, Sugathan, Vijayakumar T (1986) Preva