Review

Structure-function relationships in class CA1 cysteine peptidase propeptides*

Bernd Wiederanders

Institute of Biochemistry, Klinikum, Friedrich-Schiller-University Jena, Nonnenplan 2, D-07743 Jena, Germany

Received: 30 May, 2003; revised: 18 July, 2003; accepted: 29 August, 2003

Key words: papain family, cathepsin L-like peptidases, propeptide inhibition, processing, foldase

Regulation of proteolytic enzyme activity is an essential requirement for cells and tissues because proteolysis at a wrong time and location may be lethal. Proteases are synthesized as inactive or less active precursor molecules in order to prevent such inappropriate proteolysis. They are activated by limited intra- or intermolecular proteolysis cleaving off an inhibitory peptide. These regulatory proenzyme regions have attracted much attention during the last decade, since it became obvious that they harbour much more information than just triggering activation.

In this review we summarize the structural background of three functions of clan CA1 cysteine peptidase (papain family) proparts, namely the selectivity of their inhibitory potency, the participation in correct intracellular targeting and assistance in folding of the mature enzyme. Today, we know more than 500 cysteine peptidases of this family from the plant and animal kingdoms, e.g. papain and the lysosomal cathepsins L and B. As it will be shown, the propeptide functions are determined by certain structural motifs conserved over millions of years of evolution.

Cysteine peptidases of clan CA family C1 (papain family) can be found in the animal and plant kingdoms as well as in some viruses and prokaryotes. Five hundred and fifty nine members of this peptidase family are actually registered in the respective tree of the

*Presented at the XXX Winter School of Faculty of Biotechnology, Jagiellonian University, Kościelisko, Poland, 28th February–4th March, 2003.
**To whom correspondence should be addressed: tel.: (49 3641) 938 611; fax: (49 3641) 938 612; e-mail: bwie@mti.uni-jena.de

Abbreviations: BCP, Bombyx cysteine protease; BCPI, Bombyx cysteine protease inhibitor; DPPI, dipeptidyl peptidase I; ER, endoplasmic reticulum; GlcNAc, N-acetylglucosamine; MMPs, matrix metalloproteinases; PPIV, papaya protease IV. The suffix E70p means that this residue is located in the propeptide part of the sequence.
The enzymes share their general architecture but also the micro-arrangement of the three catalytic residues Cys 25, His 159 and Asn 175 (according to the papain numbering). The ionized state of the nucleophilic cysteine residue in the active site is independent of substrate binding making these and other cysteine proteases a priori active (Polgar & Halasz, 1982). This catalytic mechanism is basically different from that of serine proteases whose serine residue in the catalytic triad becomes ionized only upon substrate binding.

Eukaryotic papain family peptidases comprise three parts: an N-terminal signal sequence (10–20 amino acids) is followed by the prosequence (between 38 and 250 amino acids), the third part represents the mature enzyme, generally 220–260 amino acids long. The tertiary structure of the enzyme part is characterized by two domains (R and L) of comparable size with the active site cleft in between. The catalytic site is already preformed in the precursor. It is localized at the bottom of the active site cleft and involves the three residues mentioned above. For more details see the recent review by McGrath (1999).

Most CA1 peptidases act as endopeptidases. Some peculiarities and exceptions from this general rule can be explained by structural details of the catalytic domains as the “occluding loop” in cathepsin B which favours the binding of protein C-termini thus enabling its peptidyl dipeptidase activity (Musil et al., 1991), the Cys 331 of cathepsin C which is necessary for tetramerization and thus for dipeptidyl peptidase activity (Horn et al., 2002), or the “mini-chain” of cathepsin H anchoring the positively charged amino group of the substrate N-terminus (Guncar et al., 1998). Reasons of other features, such as the carboxypeptidase activity of cathepsin X, the lack of the activation of procathepsin W or the functions of C-terminal extensions of parasite derived enzymes still remain to be elucidated.

The functions of CA1 peptidases are different in various organisms. Only few examples of viral, prokaryotic and yeast CA1 peptidases are listed in the MEROPS protease database. There is only little knowledge of their physiological functions.

Plant proteinases of this class are mainly used to mobilize storage proteins in seeds. Protein bodies of seeds contain both storage proteins and protease precursors. The latter become activated after germination and start degradation of the stored proteins (Schlereth et al., 2001). Some of these enzymes have medical significance because they are resorbed in the gut as active enzymes and exert an immunogenic potential (Furmonaviciene et al., 2000; Nettis et al., 2001).

Most parasitic cysteine peptidases act extracellularly. They help the parasites to invade tissues and cells, to gain nutrients, to hatch, to enter and to leave cysts, or even to evade the host immune system. For details see the review by Sajid & McKerrow (2002). Primitive organisms depending on phagocytosis use cysteine proteases to digest phagocytosed proteins. The enzymes of these organisms are already packed in lysosomes or acidified lysosome-like structures (Volkel et al., 1996; Krasko et al., 1997; Gotthardt et al., 2002).

Mammalian CA1 cysteine peptidases are considered as primarily lysosomal enzymes. Only cathepsin W seems to be retained in the endoplasmic reticulum (ER) (Wex et al., 2001). Some cathepsins are found in nearly all tissues and cells (cathepsins B, C, H, L, O), thus probably fulfilling housekeeping functions. Others show a restricted organ distribution (cathepsins S, K, V, F, X, W) suggesting specific functions. Recent information about cathepsin functions came from modern genetic approaches as mutational analyses and gene knock out animals. A recent review of the physiological and pathological roles of mammalian and parasitic CA1 peptidases is recommended for interested readers (Lecaille et al., 2002).
PROPEPTIDE INHIBITION

Structural background

The inhibition of CA1 cysteine proteases by their respective propeptide parts was first observed by Fox et al. (1992). They observed a strong inhibition of cathepsin B by a 56 amino acids long synthetic peptide corresponding to residues -62 to -7 of rat liver procathepsin B. The inhibition was pH dependent. At pH 6.0, the inhibition was a slow binding one step reaction, whereas the inhibition at pH 4.0 followed the classical scheme. The propeptide was also slowly degraded by the enzyme at pH 4.0. The authors suggested a loose complex between the pro and the mature domain at acidic pH.

Taylor et al. (1995a) expressed the pro-regions of two proteases from Carica papaya, papain and PPIV (papaya protease IV), as recombinant proteins in Escherichia coli and studied the inhibitory activity of the peptides toward papain, caricain, chymopapain and PPIV. They found different \(K_i \) values being three orders of magnitudes higher for PPIV than for the others. They discussed this selectivity for the first time on the basis of structural differences. Numerous reports by different groups confirmed later the general fact that the inhibitory propeptide parts are regulatory elements of cysteine protease activity (Volkel et al., 1996; Maubach et al., 1997; Visal et al., 1998; Guay et al., 2000; Billington et al., 2000).

The structural background of this inhibition was elucidated by X-ray structure analyses. Papain was the first mature cysteine protease whose structure was published (Drenth et al., 1968). A 1.65 Å resolution revealed later a two domain fold of papain with the active site located in a groove between the two domains (Kamphuis et al., 1984). This particular feature is highly conserved amongst cysteine proteases of this type in all kingdoms (Musil et al., 1991; McGrath et al., 1995; Roche et al., 1999).

The first structures of cysteine protease precursors were published by Cygler et al. (1996), Turk et al. (1996) and Coulombe et al. (1996). Their studies revealed how the propeptide is attached to the mature enzyme (Coulombe et al., 1996). The most striking result was the elucidation of the mode of propeptide inhibition. The authors clearly showed that the propeptide covers the active site cleft in a non-productive orientation. The S subsite is occupied by the C-terminal residues (e.g. Gly77p, Leu78p and Gln79p in procathepsin L) whereas the S’ subsites are mainly occupied by the N-terminal residues. Such an orientation does not allow the hydrolysis of the peptide bond, however, the tightly bound molecule hinders the access of substrate molecules to the active site. This mode of inhibition is found in all class CA1 cysteine peptidases whose zymogen structures have been resolved.

The propeptides contain some characteristic elements which are highly conserved in evolution. Karrer et al. (1993) compared the N-terminal amino-acid sequences of 15 cysteine protease zymogens. They found a consensus sequence known as ERFNIN motif present in the \(\alpha 2 \) helix of a great number of cysteine protease propeptides of numerous species, including Tetrahymena. However, in cathepsin B, the \(\alpha 2 \) helix is much shorter and does not contain the ERFNIN motif. On this basis, the authors defined two subfamilies of cysteine proteases, the cathepsin L like containing the ERFNIN motif, and the cathepsin B like lacking this motif. In cathepsins F (Wang et al., 1998; Nagler et al., 1999) and W (Linnevers et al., 1997; Brown et al., 1998; Wex et al., 1998), the Ile and Asn residues of the ERFNIN motif are replaced by Ala and Gln, defining a third subgroup of cysteine proteases characterized by the ERFNAQ motif, called cathepsin F like subgroup (Wex et al., 1999).

Another highly conserved motif is the GxNxFxD heptapeptide motif (GNFD in brief) which can also be found in most of the cys-
teine protease propeptides. The motif is located at the kink of the β-sheet immediately before the chain builds the third helix turning down into the active site cleft. The Asp residue in the GNFD motif seems to be essential for the correct processing of the protease precursors since replacement of this Asp by Asn, Tyr, Met, Val or Glu resulted in non functional papain mutants (Vernet et al., 1995).

Procathepsin F contains a propeptide which is more than twice as long as the propeptides of a closely related ERFNAQ subfamily member, cathepsin W. Besides this distinctive feature it shows a cystatin-like domain which makes the propeptide of cathepsin F unique amongst the CA1 cysteine peptidases (Nagler et al., 1999). It is still unclear whether or not the cystatin-structure element contributes much to the inhibitory potency of the cathepsin F propeptide in vivo.

Inhibition type and constants

Human papain like proteases are involved in a variety of pathological processes, such as malignant tumour invasion and chronic destructive processes. Moreover, proteases of this type are also important for the life cycle and infectivity of parasitic pathogens like *Fasciola hepatica*, *Trypanosoma* species and others. Therefore, enzymes of this class represent attractive targets for the development of therapeutic inhibitors. However, since the proteases play important roles in normal protein turnover and protein processing, and due to the broad substrate specificity of cysteine proteases, the development of inhibitors with high selectivity is a great challenge.

The structural details of the interaction between the propeptides of cysteine proteases and their cognate enzymes suggest a selectivity of inhibitory propeptide action. Kinetic constants of this inhibition have been studied by several groups. The selectivity has various reasons and it is by far not as good as might be expected. Nevertheless, the studies were the basis for the development of peptide derived low M_r inhibitors mentioned below. Table 1 shows details of kinetic experiments in which the propeptides act in *trans*.

An interesting observation was the existence of proteins with homology to the propeptide regions of cysteine proteases, however, expressed independently from the co-expressed enzyme. The occurrence of such proteins has been reported in activated mouse T lymphocytes and mast cells, they were named CTLA-1 and -2 (Denizot et al., 1989; Delaria et al., 1994), and in the hemolymph of the silkmoth *Bombbyx mori*, named BCPI α and β (*Bombbyx* cysteine protease inhibitor (Yamamoto et al., 1999a; 1999b; Kurata et al., 2001; Yamamoto et al., 2002). Moreover, a search in the SwissProt databank revealed the occurrence of further sequences homologous to CTLA-2 in rat (R/CTLA-2) as well in the *Drosophila* genome (D/CTLA-2). Whereas the kinetic constants of BCPIs and CTLAs have been measured, the rat and the *Drosophila* proteins have not been characterized so far. Yamamoto et al. (2002) suggested the origin of this class of inhibitory peptides by partial gene duplication of an ancestor cysteine protease gene thus leading to a new class of endogenous inhibitors without relation to cystatins and other endogenous inhibitors. A biological role of these proteins has not been reported so far.

Selectivity of inhibition

Selectivity of propeptide inhibition has to consider two different meanings: 1st how selective is an effect between two members of the family within a given species (e.g. human cathepsin L *vs* human cathepsin K), and 2nd how selective is the effect in an interspecies comparison (e.g. human cathepsin L *vs* *F. hepatica* cathepsin L). This is important if propeptide derived inhibitors should be taken as leading structures for the development of pharmaceuticals. Numerous experiments have been performed to characterize the type of propeptide inhibition toward different cysteine peptidases, moreover, truncated and
Table 1. Inhibition constants of cysteine protease propeptides toward different proteases, either the cognate or a non-cognate enzyme, using low MW substrates

<table>
<thead>
<tr>
<th>Propeptide species</th>
<th>Truncated/ full length</th>
<th>Target enzyme</th>
<th>pH</th>
<th>Substrate</th>
<th>$K [\text{nM}]$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hum Cat L</td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>0.12</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat K</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>0.27</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat S</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>85</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>>600</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>>600</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td>Hum Cat K</td>
<td>full</td>
<td>Cat K</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>5.5</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>3.6</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat S</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>8.3</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>>600</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>>600</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td>Hum Cat S</td>
<td>full</td>
<td>Cat S</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>7.6</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>0.46</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat K</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>7.0</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-LR-AMC</td>
<td>>600</td>
<td>Guzy et al. (2000)</td>
</tr>
<tr>
<td>Hum Cat S</td>
<td>full</td>
<td>Cat S</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.27</td>
<td>Maubach et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.36</td>
<td>Maubach et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Par. Cat L</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.37</td>
<td>Maubach et al. (1997)</td>
</tr>
<tr>
<td>Hum Cat S</td>
<td>full</td>
<td>Cat S</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.049</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.079</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td>P. c. Cat L*</td>
<td>full</td>
<td>Cat L</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>20.9</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat S</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>>150</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td>Hum Cat K</td>
<td>full</td>
<td>Cat K</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>2.61</td>
<td>Billington et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat K</td>
<td>4.0</td>
<td>Z-FR-AMC</td>
<td>147</td>
<td>Billington et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>26.1</td>
<td>Billington et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>400</td>
<td>Billington et al. (2000)</td>
</tr>
<tr>
<td>B. m. CP **</td>
<td>full</td>
<td>BCP</td>
<td>5.25</td>
<td>Z-FR-AMC</td>
<td>0.0059</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>0.036</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat H</td>
<td>6.8</td>
<td>R-AMC</td>
<td>92</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-R-AMC</td>
<td>>4000</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td>Synth. Cat B</td>
<td>full</td>
<td>Cat B</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>0.4</td>
<td>Fox et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>4.7</td>
<td>Z-FR-AMC</td>
<td></td>
<td>Fox et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>4.0</td>
<td>Z-FR-AMC</td>
<td>84</td>
<td>Fox et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>5600</td>
<td>Fox et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>4.0</td>
<td>Z-FR-AMC</td>
<td>2800</td>
<td>Fox et al. (1992)</td>
</tr>
<tr>
<td>CTLA-2β</td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>24</td>
<td>Delaria et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Delaria et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat H</td>
<td>6.8</td>
<td>R-AMC</td>
<td>87(Cu)</td>
<td>Delaria et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>7.4</td>
<td>Z-FR-AMC</td>
<td>25</td>
<td>Delaria et al. (1994)</td>
</tr>
<tr>
<td>Fasc. hep. Cat L</td>
<td>full</td>
<td>FC CL1</td>
<td>6.5</td>
<td>Bz-VLK-AMC</td>
<td>1.73</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>FC CL2</td>
<td>6.5</td>
<td>Bz-VLK-AMC</td>
<td>12.0</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>>10000</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Papain</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>10000</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat B</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>>10000</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>full</td>
<td>Cat K</td>
<td>5.5</td>
<td>Bz-FR-AMC</td>
<td>>10000</td>
<td>Roche et al. (1999)</td>
</tr>
<tr>
<td>HumCat L</td>
<td>4p-90p</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>0.088</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>1p-81p</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>0.66</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>21p-95p</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>11.5</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>52p-95p</td>
<td>Cat L</td>
<td>5.5</td>
<td>Z-FR-AMC</td>
<td>2900</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>4p-90p</td>
<td>Cat S</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>44.6</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>21p-95p</td>
<td>Cat S</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>4p-90p</td>
<td>Cat B</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>21p-95p</td>
<td>Cat B</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>4p-90p</td>
<td>papain</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>21p-95p</td>
<td>papain</td>
<td>6.0</td>
<td>Z-FR-AMC</td>
<td>>1000</td>
<td>Carmona et al. (1996)</td>
</tr>
<tr>
<td>CatS/P. c. Cat L chimera *</td>
<td>S1-54 / L44-86</td>
<td>Cat S</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>0.1</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td>CatS/P. c. Cat L chimera*</td>
<td>L1-43 / S55-98</td>
<td>Cat S</td>
<td>6.5</td>
<td>Z-VR-AMC</td>
<td>1.4</td>
<td>Guo et al. (2000)</td>
</tr>
<tr>
<td>Rec BCPI</td>
<td>Full</td>
<td>BCP</td>
<td>5.25</td>
<td>Z-FR-AMC</td>
<td>0.11</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Δ2</td>
<td>BCP</td>
<td>5.25</td>
<td>Z-FR-AMC</td>
<td>0.38</td>
<td>Kurata et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Δ6</td>
<td>BCP</td>
<td>5.25</td>
<td>Z-FR-AMC</td>
<td>2.4</td>
<td>Kurata et al. (2001)</td>
</tr>
</tbody>
</table>

*P. c. Paramecium caudatum; **B. m. Bombyx mori
chimeric propeptides were involved in these studies in order to determine which part of the propeptide is of importance for selectivity. The results can be summarized as follows:

- Mammalian cathepsin propeptides with a complete α2 helix are poor inhibitors of cathepsin B and of papain (Delaria et al., 1994; Carmona et al., 1996; Guay et al., 2000; Billington et al., 2000; Kurata et al., 2001);
- The cathepsin B propeptide is a poor inhibitor of papain (Fox et al., 1992);
- The species differences between inhibitory propeptide and enzyme do not follow a general rule (Roche et al., 1999; Guo et al., 2000; Kurata et al., 2001);
- There is only little selectivity of propeptide inhibition between cathepsins S, L and K (Guay et al., 2000);
- N-terminal truncation of the propeptide reduces the inhibitory potency more than truncation at the C-terminus (Carmona et al., 1996; Kurata et al., 2001);
- The N-terminal part of the propeptide shows a greater influence on selectivity than the C-terminal part (Guo et al., 2000).

Some of the findings from different laboratories are not compatible, e.g. the inhibition of cathepsin L by the propeptide of cathepsin S showed a difference in K_i of one order of magnitude (Maubach et al., 1997 and Guay et al., 2000) vs (Guo et al., 2000). Most of the propeptides are very hydrophobic. We observed a remarkable adsorption of the propeptides to the surface of assay tubes. This resulted in incorrectly high K_i values (Maubach et al., 1997) which we later corrected on the basis of a more careful analysis (Guo et al., 2000). Some of the deviating data may be caused by such experimental details, but others may also be explained by different substrate and pH conditions as the authors already discussed (Guay et al., 2000).

Guay et al. (2000) discussed the inhibition of cathepsins S, K and L vs. papain by the respective propeptides on the basis of homologies of the propeptide sequences between Thr55p and Leu78p (procathepsin K numbering) which cover the active site cleft. Whereas the cathepsins S, K and L share 10 of the 24 amino acids, papain shares only 4, and papain shows an additional insertion between the residues binding to S1 and S2 (Guay et al., 2000).

From some data one might speculate that propeptides of cysteine peptidases have acquired increasing selectivity and increasing inhibitory potency during evolution:

- Mammalian propeptides are by far the best inhibitors of their cognate enzymes in comparison to the propeptide mediated inhibition of Paramecium tetraurelia or plant enzymes (Taylor et al., 1995; Roche et al., 1999; Guo et al., 2000);
- The Paramecium tetraurelia cathepsin L propeptide inhibits the parental enzyme in a two step reaction (Guo et al., 2000) (see Scheme 2 below and the respective discussion). This is a unique observation in the papain family up to now;
- The K_i values of the inhibition of plant enzymes by their propeptides have been deduced from steady-state measurements. Pre-steady-state was not recorded at all (Taylor et al., 1995).

Measuring the pre-steady-state inhibition kinetics of plant peptidases by their respective propeptides would be the key experiment in order to support the optimisation hypothesis.

A closer view on the active site of cathepsins L, K and S shows that the two bulky aromatic residues Phe63p and Phe71p of the cathepsin L propeptide do not fit well into the respective binding pocket of cathepsin S due to steric hindrance by Phe146 (cathepsin S). In cathepsin L, Leu144 is in this position which allows a tight contact of the propeptide with the mature enzyme. This may explain the differences in K_i of cathepsin L propeptide inhibition toward cathepsins L and S (Guay et al., 2000; Guo et al., 2000). The propeptide of cathepsin K shows in this position two branched amino acids, Leu63p and Val71p. The hydrophobic interactions of these residues with Phe146 and Leu144 in cathepsins S
and L, respectively, are obviously much more tight than with Gln143 in the cognate cathepsin K. The different kinetic constants for this inhibition detected by two independent groups may be explained by the different conditions: whereas Guay et al. (2000) determined the activity at pH 5.5 toward Z-LR-AMC, the activity of cathepsins L and K was measured with Z-FR-AMC at pH 6.0 (Billington et al., 2000).

In cathepsin B, the occluding loop prevents the propeptide of other cathepsins from binding to the active enzyme.

The electrostatic surface potentials of papain, various cathepsins and their propeptides reveal significant differences amongst them (see Fig. 1). Thus, the overall surface charge besides the atomic interactions may in some cases also contribute to the selectivity of propeptide inhibition.

Two different types of inhibition can be observed when propeptides are incubated with various enzymes. The general mechanism by which the propeptides react with their cognate peptidases is tight binding. It is a one step reaction according to Scheme 1.

\[
P \xleftarrow{k_{on}} ES \xrightarrow{k_{o}} S + E + I
\]

Scheme 1

Another type of inhibition can also be observed in which the enzyme first forms a loose contact to the propeptide (Scheme 2). The initial contact induces in both the propeptide and the enzyme a conformational shift resulting in \(k_{o} \) values of the complexes resembling those of the cognate propeptide/enzyme pairs. This was observed with mutants destabilizing the mini domain between helices \(\alpha 1 \) and \(\alpha 2 \) in procathepsin S (Schilling et al., 2001) and also for the inhibition of cathepsin H by the cathepsin L propeptide (own unpublished result).

\[
P \xleftarrow{k_{on}} ES \xrightarrow{k_{o}} S + E + I
\]

Scheme 2

Propeptide derived peptidomimetic inhibitors

The development of protease inhibitors is an obvious challenge, either for the treatment of diseases whose progress is caused by uncontrolled protease activity, or for intervention into the life cycle of parasites. Most inhibitors blocking the active site of a protease react covalently. They are directed to the catalytic cysteine residue common within all members of the family — the basis of the clan classification — and act, therefore, with low selectivity. However, the CA1 cysteine peptidase precursors provide examples of non-covalent inhibition with relatively high selectivity as mentioned above, and there are some approaches to use their structural features for the development of effective medicine. Furthermore, modifications stabilizing the peptide moieties against degradation are also necessary, as e.g. introduction of D-amino acids.

Carmona et al. (1996) used already truncated forms of recombinant cathepsin L propeptides in order to study the contributions of defined segments to the inhibitory potency. However, truncation led to a dramatic loss of affinity suggesting that extensive molecular contacts are necessary for efficient inhibition. Chowdhury et al. (2002) carefully analysed the binding mode of the penta-peptide moiety MNGFQ (residues 75p to 79p of the cathepsin L propeptide) spanning the active site groove of cathepsin L from the S2' to S3 subsites in order to synthesize an optimized non-covalent selective cathepsin L inhibitor. They ended up with a series of compounds, the best of which showed a \(K_i \) of 19 nM toward cathepsin L, the \(K_i \) values toward
Figure 1. Model of electrostatic potentials on the surfaces of three cysteine protease propeptides and of three mature cysteine proteases.

The models were calculated by Swiss-PdbViewer (Guex & Peitsch, 1997) using atomic partial charges for each molecule. The colour of the electrostatic potential maps ranges from red (–8 kT/mol) via white (neutral) to blue (+8 kT/mol). **Upper row:** propeptides of cathepsins S (Kaulmann, PhD thesis), K (PDB entry 1BY8), and L (PDB entry 1CS8). The mature enzymes are shown as thin white sequence chains, i.e. the model does not show the contact area with the mature enzyme. **Lower rows:** papain (PDB entry 9PAP), procathepsin L (PDB entry 1CS8) and procathepsin K (PDB entry 1BY8). View on the active-site cavity and on the contact area of the mature enzyme with the propeptide. The proparts of cathepsins K and L are shown as thin white sequence chains.
cathepsins K and B being 5.9 and 4.1 μM, respectively, which is remarkable since the full length propeptide of cathepsin L shows only a 2-fold better selectivity toward cathepsin K.

The propeptide of cathepsin B was also systematically truncated from the N- as well as from the C-terminus in steps of 5 amino acids, and the change of K_i toward cathepsin B was recorded. The stepwise truncation from either the N- or the C-terminus increased the K_i moderately (Chen et al., 1996).

Schaschke et al. (1998) in a very sophisticated approach used the Leu-Gly-Gly (44p–46p of cathepsin B propeptide) motif to develop selective trans-epoxysuccinyl derivative based cathepsin B inhibitors. This sequence binds in the anti-substrate orientation to the S subsite thus mimicking the binding mode of the propeptide, whereas the Leu-Pro-OH moiety occupies the S' subsite.

The inhibitor MeO- GGL-trans-epoxysuccinyl-LP-OH showed remarkable selectivity of cathepsin B inhibition: the k_2/K_i ratios (which is the apparent second-order rate constant calculated from $k_{obs}/[I]$ for $[I] << K_i$) of cathepsins B and L versus papain inhibition were 103 and even 1262, respectively.

Truncation of recombinant Bombyx mori cysteine protease inhibitor (BCPI) resulted in a loss of inhibitory activity, but here, the C-terminus seemed to be responsible for efficient inhibition, because removal of the 10 C-terminal amino acids completely abolished the inhibition toward the cognate BCP (Kurata et al., 2001).

The parasite cysteine proteases cruzipain and congopain are also targets for the development of selective inhibitors since the parasites cause severe human and animal diseases in tropical regions. A systematic study of 23 overlapping 15-mer peptides and peptide amides, respectively, mimicking the active site-covering sequences of the propeptides resulted in four competitive inhibitors of congopain, cruzipain and recombinant cruzain. The peptides did not significantly inhibit cathepsins B and L (K_i above 100 μM) and thus showed a satisfying degree of selectivity. However, the best K_i values were around 5 μM and, therefore, were too high to make these peptides efficient inhibitors (Lalmanach et al., 1998). Nevertheless, the pentapeptide YHN-GA was present in all four peptides and constituted an essential element for selectivity and inhibition of parasite proteases and, therefore, was discussed as a promising leading structure for the development of anti-parasitic therapeutic drugs.

It must be mentioned that the development of substrate derived low Mr inhibitors resulted in very promising substances. They represent a much greater group which, however, will not be reviewed here.

PROCESSING

Here, we summarize the current knowledge about the mechanistic and general aspects of the cysteine protease precursor activation processes. The processing of protease precursors into active enzymes includes two steps, the activation of the zymogen and one or more limited proteolytic cleavages within the polypeptide backbone as well as at the N- and C-termini, respectively (Mach et al., 1994, Menard et al., 1998). If this is catalysed by the molecule itself, it is called intramolecular or unimolecular. However, if it is catalysed by a second molecule it should be named intermolecular or bimolecular (Rowan et al., 1992). This clarity of nomenclature seems to be necessary because the term intramolecular processing is sometimes incorrectly used when a purified recombinant protease precursor is self-processing just by a shift from neutral to acidic pH.

Some authors discriminate two steps in the intramolecular activation of a protease precursor molecule: the first makes the scissile bond accessible, mostly by a conformational shift, and the second leads to the — at least transient — removal of the inhibitory propeptide (Menard et al., 1998). If a bimolecular
process is considered, the scissile bond(s) is/are always accessible due to the high flexibility of the C-terminal loop of the propeptide. The in vivo conditions for protease precursor activation are generally very complex involving not only the pH but also other proteases, their endogenous inhibitors, macromolecular components like glycosaminoglycans (Ishidoh & Kominami, 1995; Kihara et al., 2002) and clusters of negative charges (Mason & Massey, 1992) influencing the maturation process. Moreover, the liberation of the propeptides or their parts from the precursors generates additional inhibitors with moderate affinity for the active enzymes (see above). The in vivo action of such peptides is not very likely but cannot be completely excluded. Most of the split products may be rapidly degraded within the acidic environment of the vacuoles where they arise. The propeptides remain stable until pH values around 5.0, but may change their native conformation below this critical pH (Maubach et al., 1997). However, the presence of cathepsin L propeptide could still be demonstrated after 2 h incubation with active cathepsin L at pH 5.1 (Menard et al., 1998). This leads to the suggestion that cysteine protease propeptides may not only play a role in the regulation of the protease activity itself but may also reduce the generation of active enzyme.

Lysosomal cysteine protease precursor activation was first intensively studied by Nishimura et al. (1987a and 1987b). They identified the lysosomes not only as the site of cathepsin action but also of their activation. They were able to prove that correctly trimmed carbohydrate chains and an acidic pH are necessary prerequisites for processing of procathepsins to mature enzymes (Nishimura et al., 1988a; 1988b; Oda et al., 1991). Using group specific inhibitors, they suggested the involvement of at least one pepstatin sensitive protease, probably cathepsin D, in the activation of procathepsins B, H and L (Nishimura et al., 1988c; Nishimura et al., 1989; Kawabata et al., 1993), a result also confirmed by us (Wiederanders & Kirschke, 1989). Later on, the same group showed that a leupeptin sensitive protease may also be involved in the processing of cathepsin precursors (Nishimura et al., 1995). They confirmed a suggestion made earlier by Salminen & Gottesman (1990). To make the confusion complete, matrix metalloproteinases (MMPs) seem to be involved, too, since Hara et al. (1988) were able to show that metal chelators such as o-phenanthroline inhibit also the processing of cathepsin L, B and H precursors in macrophages.

Further progress in understanding the order of the processing steps came from experiments with recombinant proenzymes. Procathepsins expressed in yeast systems can be activated in vitro by proteases with different substrate specificities. This indicates that the exposition of scissile bond(s) rather than the amino-acid sequence of the loop itself are determinants of the cleavage (Menard et al., 1998). As a consequence, the primary in vitro processing products did not always show the terminal sequences of in vivo processed mature enzymes. In vitro processing of propapain resulted in enzymes with N-terminal extensions of 5 and 3 amino acids (Vernet et al., 1991). Only 10% of the in vitro processed recombinant precursors had the N-terminus of wild type papain (Vernet et al., 1990). Rowan et al. (1992) studied the processing of a rat procathepsin B mutant (C29S; S115A) by five different proteases in vitro. Compared to the wild-type, all processed enzymes revealed N-terminal extensions whose lengths varied between 4 and 32 residues. Interestingly, trimming of the extensions was observed after incubation of the primary processing products with the exopeptidases cathepsin H or dipeptidyl peptidase I (DPPI). The trimming stopped before the Leu1-Pro2 bond of mature cathepsin B thus resulting in the N-terminal sequence typical for all lysosomal cathepsins, X-Pro.

In vitro processing

In vitro activation studies of CA1 peptidase precursors have mainly concentrated on two
major points. The first question is whether the precursors are able to autoactivate or this process needs the assistance of another active protease. The second is whether the in vitro processing products are identical to those which can be isolated from tissues or cells. The latter question is of certain interest for large scale production of recombinant active enzymes.

Recombinant propapain was successfully expressed and activated as one of the first cysteine protease precursors (Vernet et al., 1990). The processing reaction seems to be a unimolecular process (Vernet et al., 1991). In contrast to propapain, a recombinant precursor of papaya protease IV (PPIV) was incapable of autocatalytic processing due to very stringent substrate specificity although the enzyme activity of the expressed PPIV precursor has been documented (Baker et al., 1996).

Autocatalytic maturation of recombinant procathepsin L has been reported in which intra- and intermolecular reactions might be involved (McDonald & Emerick; 1995, Nomura & Fujisawa, 1997; Menard et al., 1998). Detailed studies of the concentration dependence of activation progress revealed participation of both bimolecular as well as unimolecular components in the activation (Menard et al., 1998).

In an early report, human recombinant procathepsin B was suggested to be activated at acidic conditions by unimolecular cleavage because the activation was concentration-independent (Mach et al., 1994), whereas Rozman et al. (1999) suggested an intermolecular rather than intramolecular activation process. Recent experiments using the binding hierarchy of cystatin C to different processing products resulted for the first time in a direct experimental proof of unimolecular procathepsin B activation (Quraishi & Storer, 2001).

Recombinant procathepsin K was auto-activated at pH 4.0 resulting in an enzyme with an N-terminal dipeptide extension (Bossard et al., 1996; McQueney et al., 1997), whereas pepsin treatment of recombinant procathepsin K at this pH resulted in the “correct” sequence of mature enzyme (Linnevers et al., 1997). Recombinant procathepsin S expressed in a yeast system can be activated autocatalytically as well as by addition of subtilisin BPN’ with high yield (Bromme et al., 1993). The pH seems to be the most important parameter for processing, because at pH 8 cathepsin S is still active, but autocatalytic processing of procathepsin S cannot be observed.

An interesting exception is procathepsin W. Procathepsin W was expressed in mammalian cells transfected with the respective cDNA (Wex et al., 1998). However, up to now neither a report of successful procathepsin W activation in vitro nor any report of active enzyme have been published (Wex et al., 2001).

Cathepsin X is also unique within the group of lysosomal cysteine proteases. It shows the shortest propeptide of all cathepsins (Santamaria et al., 1998; Sivaraman et al., 2000). The propeptide is covalently attached to the mature enzyme by a disulfide bridge between the active site Cys31 and Cys10p of the propeptide, thus making an autoproteolytic activation impossible. Therefore, in vitro maturation of procathepsin X needs assistance by another protease as well as reduction of the S–S bridge.

In vivo processing

In vivo processing experiments have been performed to find out where the activation process occurs and which processing enzymes might be involved.

It has long been discussed that procathepsin B might be activated autocatalytically in vivo (Mach et al., 1994; Rozman et al., 1999) or by the complete mixture of cathepsins within the lysosomes. In a recent paper, Ishidoh et al. (1999) identified four candidates as the processing proteases: cathepsins H, S, C and
even procathepsin L. Activation of procathepsin B in vivo can also occur in the extracellular matrix, e.g. by tissue plasminogen activator (tPA) (Dalet-Fumeron et al., 1996) or active extracellular cathepsin D (van der Strappen et al., 1996).

Procathepsin K is activated from its precursor within the lysosomal compartment of osteoclasts as expected (Rieman et al., 2001). In contrast to other lysosomal cathepsins whose secretion has been reported to occur as zymogens (e.g. in malignant tumours), some cell types secrete active cathepsin K (Dodds et al., 2001; Hou et al., 2002). Furthermore, in osteoarthritis, autocatalytic activation of secreted procathepsin K in damaged cartilage samples has been observed (Konttinen et al., 2002). Surprisingly, a mutation of the C-terminal Met329 of procathepsin K to Ala resulted in a complete inhibition of precursor processing (Claveau & Riendeau, 2001).

Menard et al. (1998) demonstrated in their studies that more than one peptide bond in the flexible region between the cathepsin L propeptide and the mature enzyme might be recognized for processing and are cleaved. These alternative cleavage sites of procathepsin L are indeed used in vivo resulting in cathepsin L species with three different N-termini (Ishidoh et al., 1998). The authors confirmed in a later experiment the sequence IPTKV as the major N-terminal sequence of fully processed cathepsin L (Ishidoh et al., 1999). They identified the lysosomes as the processing compartment of procathepsin L in NIH 3T3 cells, whereas procathepsins B and D were processed in late endosomes.

Procathepsin S maturation can only occur within the lysosomes or in other acidic vacuoles because the only potential glycosylation site of this enzyme precursor is located in the propeptide part (Shi et al., 1994; Wiederanders et al., 1992).

There are only few reports of procathepsin H activation. The processing was reported to take place in the lysosomes (Nishimura et al., 1987b) and to depend on a pepstatin sensitive aspartic protease(s) (Nishimura & Kato, 1988).

The dipeptidyl-peptidase cathepsin C is unique amongst the lysosomal cathepsins due to its tetrameric structure which is formed after processing. The activation and cleavage of the propeptide part is in some way different from that of other cathepsins. The maturation is initiated by the cleavage of an N-terminal “residual propart” (Cigic et al., 2000) resulting in the accumulation of a 36 kDa precursor with the N-terminal sequence N(134)SKQE. Further processing proceeds with the generation of an “activation peptide”, and the heavy and light chains. Whereas the activation peptide is removed the residual propart remains non-covalently attached to the heavy and light chains forming a heterotrimer (Cigic et al., 1998). The residual propart seems to be essential for oligomerization and stabilization of the final tetrameric structure (Santilman et al., 2002). Cathepsins L and S were identified as the processing proteases of procathepsin C (Dahl et al., 2001). Tetramerization of mature cathepsin C polypeptides leads to occlusion of the endopeptidase-like active site cleft and provides the structural basis of dipeptidyl peptidase activity (Horn et al., 2002). Modifying Cys331, the authors identified this amino acid as essential for tetramerization. During processing of the cathepsin C precursor, this special residue becomes exposed and tetramerization can start. The study shows that also in cathepsin C a part of the propeptide has to be removed first before the activity is exerted which is typical for this unique cathepsin.

It can be concluded from all of these studies that maturation and activation of cathepsin precursors are multistep processes. They may be performed by various proteases and they depend strongly on the cellular or extracellular environment.
FOLDING ASSISTANCE

It has been frequently stated that cysteine proteases need their propeptide parts for proper folding, however, experimental verifications are rare. The first strong hint for propeptide assisted folding of mature papain-like cysteine proteases was the very low specific activity of in vitro refolded recombinant procathepsin L with N-terminal truncations. The loss of the specific activity was proportional to the extent of propeptide truncation (Smith & Gottesman, 1989). This result was later confirmed by other groups which also showed that not any but the complete cognate propeptide was necessary for the synthesis of correctly folded procathepsin L (Tao et al., 1994; Ogino et al., 1999). This function of the propeptide cannot be replaced even under optimized folding conditions (Tobbell et al., 2002). Another set of hints came from mutations of the propeptide affecting its structure and, as an obvious consequence of the destabilized structure, also its function to support folding (Yamamoto et al., 1999; Hou et al., 1999; Kreusch et al., 2000). The questions arising from these results were whether folding assistance by the propeptide is a general phenomenon valid for all members of the CA1 peptidase family, and whether the propeptide has to be bound covalently to the mature enzyme in order to exert the foldase effect.

The answer to the first question came from experiments with cathepsin B (Mehtani et al., 1998) and from a general observation: Cathepsin B was synthesized as active enzyme from a truncated mRNA lacking exons 2 and 3. Exon 3 codes for a part of the cathepsin B propeptide. A Δ 51 splice variant of cathepsin B is expressed by some malignant tumours, and the resulting active enzyme is correctly folded.

Cathepsins X and B show shorter propeptides than all other mammalian cathepsins, but they show also small extra loops in the mature parts which may facilitate the folding. Such small loops are considered to be beneficial for folding (Cunningham et al., 1999).

These results showed that not all cathepsins need their propeptide parts for correct folding.

The answer to the second question came from experiments with exogenously added propeptides to refolding assays of denatured proteases similar to those reported earlier for other protease classes (Ohta et al., 1991; Baker et al., 1992; Ogino et al., 1999). Experiments like that with cysteine peptidases were lacking until recently. The propeptides of cysteine proteases fold correctly when expressed as recombinant proteins. They seem to retain their secondary structure over a wide pH range from 6.5 to 3.0 (Jerala et al., 1998). Several experiments have shown that addition of recombinant propeptides can efficiently catalyze the refolding of denatured mature cysteine proteinases (Pietschmann et al., 2002; Yamamoto et al., 2002; Capetta et al., 2002). With respect to cathepsin S, this effect was strongly dependent on the three-dimensional structure of the propeptide. Mutants affecting the aromatic Trp core of the propeptide showed a much weaker foldase effect than the wild type propeptide (Pietschmann et al., 2002). A mutation in the conserved GNFD motif (N70pI/F72pI) of the F. hepatica cathepsin L propeptide also diminished the foldase function of the propeptide (Capetta et al., 2002). Thus, a strong correlation exists between the structural integrity of the propeptide, its inhibitory potency and its ability to catalyze correct folding of the mature enzyme (see Fig. 2).

The recently described nucleation-condensation mechanism of protein folding is a combination of the framework model and the hydrophobic collapse model. It implies the possibility of shifting to either of the models depending on the stability of secondary and tertiary structures (Dagett & Fersht, 2003). This fits very well with the phenomenon seen in some peptidases where N-terminal folded structures can provide a scaffold for further
folding and thus facilitate the process in vivo (Frydman, 2001). In cathepsin L-like cysteine proteases, a mini-domain in the propeptide represents this nucleation centre and is suggested to be the structural correlate of its foldase function (Schilling et al., 2001).

The name foldase was introduced by Inouye’s group for specific folding assistance (Zhu et al., 1989). It describes a real enzyme-like catalysis as the name suggests. It is noteworthy that acceleration of protease folding can be achieved in cis and in trans, i.e. the propeptide acts either covalently bound to the protein in statu nascendi or it is added as a recombinant protein to renaturation assays. The first approach to study the pH-dependent denaturation/renaturation cycle of mature cathepsin B was performed by NMR-spectroscopy (Song et al., 2000).

ENZYME TARGETING

Mannose-6-phosphate dependent sorting mechanism

Mannose-6-phosphate signals for delivery of enzymes to the lysosomes or acidified vesicles can be found in the propeptide parts as well as in the mature catalytic domains. Here, we refer only to the sorting signals located in the propeptide parts.

The transfer of phospho-Glc-NAc to mannose residues of N-linked oligosaccharides of lysosomal proteins is catalyzed by the UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. The removal of terminal GlcNAc results in the generation of mannose-6-phosphate which then attaches the lysosomal proteins to the respective receptors for further transport to the lysosomes. The selectivity of the mannose phosphorylation of lysosomal enzymes has its structural basis in at least two Lys residues on the enzymes’ outer surface which are about 34 Å apart. Introduction of putative phosphotransferase recognition sequences into a secretory non-glycosylated protein, pepsinogen, resulted in its proper glycosylation (Baranski et al., 1990).

In cathepsin L, this motif is located in the propeptide. Mutation of only one of the two residues in procathepsin L prevented the molecule phosphorylation (Cuozzo et al., 1995; 1998). However, the recognition motifs for the phosphotransferase are not located in the propeptide part in all cathepsins, as has been shown for cathepsin B (Cuozzo et al., 1998; Lukong et al., 1999). In cathepsin S, the only potential glycosylation site is located in the propeptide 11 amino acids upstream from the N-terminus of the mature enzyme (Wiederanders et al., 1992). In rat hepatocytes, procathepsin B was glycosylated only at one of the two potential glycosylation sites, namely that within the propeptide (Tanaka et al., 2000). These exam-
amples seem to be rather the exceptions, as most other lysosomal proteins are glycosylated in both the pro- and mature regions. In summary, although the correct fold of the propeptide is a prerequisite for proper glycosylation in the ER, the recognition motifs for glycosylation and the glycosylation sites per se are not exclusively restricted to the propeptide part of cathepsins.

Mannose-6-phosphate independent sorting mechanisms

The existence of mannose-6-phosphate independent trafficking of lysosomal proteins has long been suggested by various lines of evidence.

- Site directed mutagenesis experiments in which the essential Asn residues of potential glycosylation sites in lysosomal proteins have been replaced by Gly or Gln. The mass of such non glycosylated enzymes was secreted, however, a small fraction remained intracellular (Nissler et al., 1998; Tanaka et al., 2000).

- Lysosomal membrane attachment of nonglycosylated procathepsin S has been demonstrated (Nissler et al., 1998).

- Lymphocytes of patients with I-cell disease show normal cellular levels of lysosomal enzymes despite severely reduced phosphotransferase activity and consequently a lack of mannose phosphorylation (Glickman & Kornfeld, 1993).

- Some parasite cathepsins are not glycosylated due to mutations of the essential Asn residues (Sajid & McKerrow, 2002); *Dictyostelium discoideum* does not express detectable amounts of mannose-6-phosphate receptors (Cardelli et al., 1986); and murine cell lines defective in mannose-6-phosphate receptor are also known (Gabel et al., 1983). Nevertheless, the lysosomal cathepsins take their correct way into these organisms/cells suggesting that a kind of “primitive targeting” independent of mannose-6-phosphate and its receptor has evolved early in evolution and is maintained until today.

The apparent structural background of mannose-6-phosphate independent sorting is obviously a conserved 9 amino acid long peptide motif which was identified to be implicated in the alternative trafficking process (Huete-Perez et al., 1999). It is located close to the N-terminal tail of the propeptides. The motif is highly conserved as exemplified by enzymes from plant, parasite, crustacean and human systems (see Fig. 3). It has to be mentioned, however, that some cathepsins lack this cryptic and ancient sorting motif, e.g. cathepsins B, F, and X, and also baculovirus cathepsin.

GICP2*	31 . WKAGIPKR .
GICP3*	31 . WKAGIPKR .
GICP1*	31 . WKAGIPKR .
human cat-L	31 . WKAMHR .
murine cat-L	31 . WKSTHR .
human cat-S	31 . WKKYRX .
human cat-K	29 . WKKTHR .
human cat-H	35 . FKSWMKHR .
human cat-V	31 . WKATHR .
D. mel.**cat-L	32 . FKLEHRKN .
H. am.***cat-L	23 . FKKFGRKY .
cruzain	41 . FKGRK .

Figure 3. Homologous nonapeptide sequences in class CA1 peptidase precursors of various species.

This motif is suggested to mediate “primitive” mannose-6-phosphate independent targeting to lysosomes and lysosome-like vesicles. Numbering starts from Met 1, data are taken from the MEROPS database. *Giardia lamblia* cysteine proteases 1, 2 and 3; **Drosophila melanogaster* cathepsin L; ***Homerus americanus cathepsin L

A receptor recognizing the motif has not been identified so far, although a 43 kD integral lysosomal membrane protein was described binding mouse procathepsin L in a pH dependent manner (McIntyre & Erickson, 1993). The binding of procathepsin L to this putative “receptor” could be blocked by a synthetic peptide comprising the first 24 N-terminal amino acids of procathepsin L (counted without the signal sequence) con-
taining the respective nonapeptide motif (McIntyre et al., 1994).

REFERENCES

Baker D, Silen JL, Agard DA. (1992) Protease pro region required for folding is a potent inhi-

Baker KC, Taylor MA, Cummings NJ, Tunon MA, Worboys KA, Connerton IF. (1996) Au-
tocatalytic processing of pro-papaya proteinase IV is prevented by crowding of the active-site cleft. Protein Eng.; 9: 525–9.

Baranski TJ, Faust PL, Kornfeld S. (1990) Gen-
eration of a lysosomal enzyme targeting sig-

Carmona E, Dufour E, Plouffe C, Takebe S, Ma-
chemistry.; 35: 8149–57.

Salminen A, Gottesman MM. (1990) Inhibitor studies indicate that active cathepsin L is probably essential to its own processing in cultured fibroblasts. *Biochim J*.; 272: 39–44.

Taylor MAJ, Briggs GS, Baker KC, Cummings NJ, Pratt KA, Friedman RB, Goodenough PW. (1995b) Expression of the pro-regions of

Yamamoto Y, Watabe S, Kageyama T, Takahashi SY. (1999c) Purification and characterization of *Bombyx* cysteine proteinase specific inhib-
