Factors improving the accuracy of determination of 15N relaxation parameters in proteins

Igor Zhukov and Andrzej Ejchart

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawinskiego 5A, 02-106 Warszawa, Poland

Received: 23 June, 1999

Key words: 15N relaxation, nuclear relaxation parameter accuracy, squash trypsin inhibitor

A number of factors at all stages of data processing which affect the accuracy of determination of 15N relaxation parameters in 15N-labeled proteins is discussed. Methods which allow to improve accuracy of the determined parameters are presented using data obtained for Cucurbita maxima trypsin inhibitor.

Recently the relationship between the internal dynamics of macromolecules and their biological functions has been the subject of much research [1, 2]. 13C and/or 15N relaxation measurements provide unique experimental data for characterization of intramolecular motions over a wide range of time scale [3, 4]. Information about the dynamics of a protein from the 15N NMR relaxation studies is typically based on the measurements of 15N longitudinal (T_1) and transverse (T_2) relaxation times and the steady-state heteronuclear 15N(1H) Overhauser enhancement (NOE) giving access to the mobility of N–H vectors [5, 6]. Sufficiently good accuracy of these relaxation parameters is crucial in further steps of the analysis of molecular motions.

General rules for optimal design and processing of relaxation measurements have been worked out for one-dimensional pulse sequences [7–9] and they remain valid for multidimensional NMR techniques as well. There is, however, a number of factors at all stages of processing of relaxation data for biological molecules which should be especially carefully taken into account due to their strong influence on accuracy of the relaxation parame-

*Presented at the symposium “Conformation of peptides, proteins and nucleic acids” held in Rynia, Poland, on 26–29 May, 1999.

This work was financially supported by grant 6 P04A 009 16 from the State Committee for Scientific Research (KBN).

Correspondence to: Andrzej Ejchart, phone/fax: (48 22) 658 4683; e-mail: aejchart@ibb.waw.pl

Abbreviations: NMR, nuclear magnetic resonance; NOE, nuclear Overhauser enhancement; CMTI-I, Cucurbita maxima trypsin inhibitor type I.
ters. Sufficiently fine spectral digitization, efficient baseline correction, and careful choice of threshold and integration limits during processing of NMR spectra are of special importance. Data reduction leading to the experimental values of relaxation parameters also requires some precaution. Separate T_1 and/or T_2 measurements should be processed together with the use of a multiparameter nonlinear least-squares procedure [10]. Dynamic NOE measurements [11] are preferred over steady-state NOE ones as they allow to save total experimental time and to improve accuracy. The factors mentioned above have been analyzed and their importance evaluated using T_1, T_2 and NOE measurements performed for a small protein, the Met8→Leu mutant of squash trypsin inhibitor, CMTI-I (M8L), composed of 29 amino-acid residues. Nevertheless, it should be stressed that an ill-designed and/or ill-performed experiment cannot be saved by applying sophisticated processing methods.

MATERIALS AND METHODS

NMR sample. 15N-labeled CMTI-I (M8L) recombinant protein was obtained by expression of a synthetic gene in *Escherichia coli* as described previously [12] and growing bacteria on glucose and 15N ammonium sulfate as the only source of nitrogen. The protein was purified by reversed-phase HPLC. All experiments were performed at 303 K on a 3 mM 15N-labeled protein sample in a solution containing 100 mM NaCl (pH = 7.0) and 10% D$_2$O. NMR spectra were acquired on a Varian Unity+ 600 MHz spectrometer equipped with a 5 mm triple-resonance gradient probe.

NMR experiments. The gradient sensitivity enhanced HSQC pulse sequence [13] with options for T_1, T_2 and T_1p measurements of 15N nuclei [14] was used to determine $T_1(^{15}$N) and $T_2(^{15}$N) values. 15N(1H) steady-state and dynamic NOEs were measured with a pulse sequence included in Varian Vnmr 6.1 software.

Evolution time in two sets of T_1 measurements was set to the following values: 10, 30, 50, 90, 130, 210, 290, 410, 530, 650, 770, 890 ms and 10, 40, 60, 80, 100, 140, 180, 320, 440, 660 ms, respectively. For T_2 measurements, a Carr–Purcell–Meiboom–Gill pulse (CPMG pulse) train with refocusing delay of 625 μs was used during the evolution delay. T_2 values were obtained from two experiments with evolution times of 10, 30, 50, 90, 130, 190, 250 ms and 10, 30, 50, 90, 130, 170, 230, 290 ms, respectively. The delay between the 180°(1H) pulses used to suppress cross-correlation effects [15] was 5 and 10 ms for the T_1 and T_2 measurements, respectively. In dynamic NOE measurements 1H presaturation time was set to: 0, 80, 200, 600 and 2100 ms. All spectra were recorded with a spectral width of 1500 Hz in the F$_2$ dimension and of 6000 Hz in the F$_1$ dimension. 2048 and 256 complex data points in time domain were collected in the phase sensitive hypercomplex mode [16] with 16 scans (T_1 and T_2) or 24 scans (NOEs) per t_1 increment. A recycling delay of 1.6 s (T_1 and T_2) and 3 s (steady-state and dynamic NOE) was employed and 15N decoupling during acquisition of data was performed using 3.2 kHz GARP sequence [17]. All NMR data were processed using NMRPipe software [18]. Spectra were transformed by applying cosine squared bell weighting function in both time dimensions with 1Kx2K points in the F$_2$ and F$_1$ dimensions, respectively. Analysis of two-dimensional spectra and cross-peak integration was performed using the XEASY program [19]. Relaxation parameters were determined by fitting the cross-peak integrals as a function of evolution time to a single-exponential decay.

RESULTS AND DISCUSSION

Baseline correction

The quantitative use of NMR spectroscopy requires accurate peak integration. In turn,
the integrals are very sensitive to small changes in the baseline of the spectrum. Baseline corruption can arise from several sources and it is inherent in many NMR experiments [20]. On the other hand, the accuracy of relaxation data can be strongly deteriorated due to improperly performed baseline correction. Despite a certain arbitrariness, a baseline correction is usually carried out in the frequency domain by fitting the baseline to a polynomial which may then be subtracted. If a baseline correction in two-dimensional spectra becomes doubtful one can resort to partial projections of one-dimensional spectra obtained as sums of all traces showing a given correlation signal. Baseline correction and integration procedures in NMR application softwares usually work more efficiently in the case of one-dimensional spectra than of two-dimensional ones. This is demonstrated by standard errors of T_1 and T_2 data obtained for six amino-acid residues of the CMTI-I (M8L) protein (Fig. 1). These residues were chosen because they exhibited the lowest signal to noise ratios and, thus, the highest relaxation time inaccuracies within the whole set of data. Inappropriate baseline correction procedure resulted in decreased accuracy of data as compared with that without baseline correction. Use of partial projections, however, allowed to improve data accuracy.

Choice of threshold

In multidimensional spectra, peaks below a given level are routinely discarded in order to avoid excessive noise. The cutoff limit called a threshold is usually adjusted well above an average noise amplitude. Adjustment of the threshold, similarly as a distorted baseline, strongly influence the determined values of relaxation times. In order to demonstrate this influence, the Lorentzian signals (halfwidth equal to 1 Hz) were calculated for six evolution times, t, in simulated $T_{1,2}$ experiments and plotted within the range ± 5 Hz (Fig. 2a). Integrals of those signals calculated for three threshold positions were used as input data for the calculations of relaxation times.

Shift of threshold brings about significant changes of calculated relaxation times T_{calc}. They differ from the value assumed in simulations ($T = 1$ s) much more than one could expect from their standard deviations (Fig. 2b). Intensity changes vs. evolution time are not single-exponential any more and particular deviations of data points from curves calculated by nonlinear least-squares procedure are opposite for too high (A) and too low (C) threshold adjustment (Fig. 2c).

Collective data processing

For longitudinal (T_1) and transverse (T_2) relaxation times it can happen that measure-
in accuracy can be obtained by measuring a given relaxation time several times. Then it is far better to process collectively individual data sets using appropriate weighting factors, if necessary [10].

The relaxation times T_1 determined for CMTH (M8L) in two separate measurements exhibited smaller errors when processed together as shown in Fig. 3. The first and second measurement comprised 12 and 10 evolution times, respectively.

Improvement of NOE data accuracy

Accurate values of heteronuclear Overhauser effect are indispensable to the analysis of molecular motions in proteins. However, unexpected NOE values were measured occasionally in proteins [21–23] and no explanation could be given for such observations. Heteronuclear 15N/1H Overhauser enhancements can be measured either in a steady-state or applying a progressive saturation (dynamic NOE). In the steady-state method NOE is calculated from the intensity ratios in two spectra measured either with or without 1H saturation. Presaturation time or relaxation delay, t_d, should be much longer than the longest T_1 value in a molecule: $t_d > 5 \cdot T_1$ or, preferably, $t_d > 10 \cdot T_1$ [24]. Such measurement is usually repeated several times. On the other hand, in the dynamic NOE a series of spectra with increasing presaturation time of 1H nuclei is measured. NOE builds up with a time constant equal to the relaxation time T_1. It should be pointed out that the T_1 values can be determined in a separate, high accuracy experiment. Therefore, dynamic NOE measurements can be processed either using T_1 data derived from separate measurements or NOE and T_1 raw data can be processed together. For this very reason a dynamic NOE measurement allows to determine NOE values more precisely than a steady-state measurement in a given experimental time.

NOEs for CMTH (M8L) were measured using both methods discussed (Fig. 4). Steady-
state results are averages of four separate measurements; total experimental time of eight 2D spectra was 111 h. The dynamic NOE measurement comprised five spectra obtained at different 1H presaturation times; total experimental time of five 2D spectra was

Figure 3. Experimental data of longitudinal relaxation times T_1 (a) and their standard errors (b) for CMTI-I (M80) protein.

Two independent measurements were processed either separately or collectively. The latter processing allowed to improve the accuracy of data.

Figure 4. Experimental data of 15N(1H) nuclear Overhauser enhancements (a) and their standard errors (b) for CMTI-I (M80) protein.

Two different experimental methods were used. In the dynamic method the NOEs values were calculated from five spectra obtained at different 1H presaturation times with T_1 values derived from a separate measurement. The steady-state results were averages of four separate measurements.
70 h. Despite significantly shorter experimental time almost half of the NOE data calculated from the dynamic NOE experiment exhibited better accuracy than those determined by the steady-state method.

REFERENCES

