Communication

Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate modulate phosphatidylserine homeostasis in glioma C6 cells

Magdalena Wójcik and Jolanta Barańska

Department of Molecular and Cellular Neurobiology, M. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland

Received: 19 November, 1999

Key words: sphingosine, sphingosylphosphorylcholine, sphingosine 1-phosphate, phosphatidylserine, phosphatidylethanolamine, glioma C6 cells

The effect of sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate on L-[U-14C]serine incorporation into phosphatidylserine and phosphatidylserine-derived phosphatidylethanolamine was investigated in intact glioma C6 cells. Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate are potent signalling molecules which, due to their physicochemical features, may function as amphiphilic compounds. It has been found that sphingosine and sphingosylphosphorylcholine (amphiphilic cations) significantly increase [14C]phosphatidylserine synthesis and decrease the amount of 14C-labeled phosphatidylethanolamine. Sphingosine 1-phosphate (an amphiphilic anion) was without effect on phosphatidylserine synthesis but, similarly as sphingosine and sphingosylphosphorylcholine, reduced the conversion of phosphatidylserine to phosphatidylethanolamine. These results strongly suggest that sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate can modulate cellular phospholipid homeostasis by stimulation of phosphatidylserine synthesis and an interference with phosphatidylserine decarboxylase.

Sphingolipids are natural and important membrane constituents, particularly concentrated in brain and nerve tissues. Sphingolipids breakdown products, such as sphingosine,

*Presented at 34th Meeting of the Polish Biochemical Society, September, 1998, Białystok, Poland.
*This study was supported by a grant from the State Committee for Scientific Research (KBN, Poland) for the Nencki Institute and a grant No. 6 PO4A 030 12.
*Address for correspondence: Jolanta Barańska, Department of Molecular and Cellular Neurobiology, M. Nencki Institute of Experimental Biology PAN, L. Pasteura 3, 02-093 Warszawa, Poland, tel.: (48 22) 669 8571; fax: (48 22) 622 5342; e-mail: baranska@nencki.gov.pl

Abbreviation: TLC, thin-layer chromatography.
sphingosylphosphorylcholine and sphingo-
sine 1-phosphate have been identified as sec-
ond messengers acting on the regulation of
cell growth, differentiation and programmed
cell death [1–3]. Recent observations have
shown that sphingosine 1-phosphate and
sphingosylphosphorylcholine may also act as
first messengers, binding to specific plasma
membrane receptors [4–6]. Thus, sphingoli-
pidas have to be regarded as intracellular and
extracellular messengers.

Sphingosine, sphingosylphosphorylcholine
and sphingosine 1-phosphate are composed of
a sphingoid backbone (which predominantly
is sphingosine), consisting 2-amino-1,3-diol
hydrophilic head domain and a long (15 car-
bon atom) domain of hydrophobic alkyl chain.
Sphingosylphosphorylcholine, a lysosphingo-
ilipid, and sphingosine 1-phosphate contain
highly polar head structures which are ester-
fied at the 1-hydroxy position by phosphocholi-
ne (sphingosylphosphorylcholine), or by a
phosphate group (sphingosine 1-phosphate)
[3]. Hydrophilic heads of sphingosine and
sphingosylphosphorylcholine can be posi-
tively charged in their aminogroups at physio-
logical pH, and therefore, together with two
distinct hydrophobic and hydrophilic groups,
may be categorized as endogenous amphili-
catic cations [7]. On the contrary, sphing-
osine 1-phosphate can be regarded as bear-
ing a net negative charge.

We have recently reported that sphingosine
and sphingosylphosphorylcholine (amphi-
philic cations) have a stimulatory and choles-
terol 3-sulfate (an amphiphilic anion) an
hibitory effect on [14C]serine incorporation
into phosphatidylserine in the microsomal
fraction from glioma C6 cells and rat liver [8].
We have also shown that sphingosine stimu-
lates phosphatidylserine synthesis in intact
glioma cells [8]. It was therefore of interest to
check what effect could be observed for sphin-
gosylphosphorylcholine and sphingosine 1-
phosphate in glioma C6 cells.

In animal cells, phosphatidylserine is solely
synthesized by the base exchange reaction in
which serine is directly exchanged for the
amino alcohol moiety of preexisting phos-
pholipids, particularly phosphatidylethanol-
amine [9]. This reaction occurs mainly in the
endoplasmic reticulum, whereas conversion
of phosphatidylserine into phosphatidylethanol-
amine, via the decarboxylation pathway,
occurs in mitochondria [10].

The aim of the present study was to examine
whether sphingosine, sphingosylphosphoryl-
choline and sphingosine 1-phosphate could af-
fect phosphatidylserine synthesis and its fur-
ther metabolic conversion to phosphatidylethanolamine in intact glioma C6 cells.

MATERIALS AND METHODS

Materials. Glioma C6 cells were from the
American Type Culture Collection (U.S.A.).
Minimum Essential Medium, calf serum,
trypsin solution and phosphate-buffered sa-
line were from Gibco BRL (U.K.). Penicillin
and streptomycin were from Polfa (Tar-
chomin, Poland). Bovine serum albumin, D-
(+)-erythro-trans sphingosine and sphingo-
sylphosphorylcholine were purchased from
Sigma Chemical Co. (St. Louis, U.S.A.).
Sphingosine 1-phosphate was from Calbio-
chem (La Jolla, U.S.A.). L-[U-14C]Serine was
purchased from Amersham (U.K.). Silica 60
plates for thin-layer chromatography (TLC)
were from Merck (Darmstadt, Germany). All
other chemicals used were of analytical grade.

Cell culture. Glioma C6 cells (passages
40–60) were used. The cells were cultured in
Minimum Essential Medium supplemented
with 10% (v/v) calf serum and antibiotics (cul-
ture medium) under a humidified atmosphere
of 5% CO2 at 37°C, as described previously
[11]. The cells were passaged when confluent using
trypsin (0.25%), and the medium was
changed twice a week. The cells had reached
confluence at the time of experiment.

Assay for the serine base-exchange ac-
tivity. Confluent cultures of cells (3 × 10^6
cells per dish, 60 mm diameter) were incu-
bated in 2 ml of the culture medium with L-[U-
14C]serine (158 mCi/mmol; 0.1 μCi/ml) in
the presence or absence of sphingosine,
sphingosylphosphorylcholine and sphingo-
sine 1-phosphate. Sphingosine and sphingo-
sylphosphorylcholine were added as a com-
plex with equimolar concentration of bovine
serum albumin to minimize the cytotoxicity
[12]. Stock solution of sphingosine 1-phos-
phate was made in methanol. Immediately
before use the solution was dried and sphin-
gosine 1-phosphate was dissolved in phos-
phate buffered saline and added to dishes. All
incubations were carried out at 37°C for 30
min. After the incubation, the medium was re-
moved and the cells were washed, scrapped
off and collected as described [11]. Lipids
were extracted using methanol/chloroform
(2:1, v/v) according to Bligh & Dyer [13] and
phospholipids were analyzed by two dimen-
sional TLC as described [11]. Phospholipid
spots were visualized with iodine vapor and
ninhydrin and scrapped off for radioactivity
counting.

Assay of cell viability. Cell viability was as-
sayed by Trypan Blue exclusion determined
microscopically after incubation of the cells
without (control) or with sphingosine, sphin-
gosylphosphorylcholine and sphingosine 1-
phosphate. In each case, Trypan Blue exclusion
showed about 97% viability.

Data presentation. The results are mean
values ±S.E.M. of at least triplicate determi-
nations. Statistical significance of differences
were estimated by Student’s t-test.

RESULTS

Figure 1 shows the action of amphiphilic
cations sphingosine and sphingosylphospho-
rlycholine on the incorporation of radioactive
serine into phosphatidylserine in glioma C6
cells. As it is shown, both amphiphilic cations
increased significantly phosphatidylserine
synthesis at a concentration-dependent man-
ner. However, sphingosine, at low, 15 μM con-
centration was practically without effect and
at 25 μM concentration increased $^{[14]}$C]serine
incorporation only negligibly (Fig. 1A). Two-
fold or even threefold increase occurred only
at 100 μM or 150 μM sphingosine added to
the assay medium (Fig. 1A). On the contrary,
sphingosylphosphorylcholine even at 15 μM

![Figure 1. Effect of various concentrations of sphingosine (A) and sphingosylphosphorylcholine (B) on $^{[14]}$C]serine incorporation into phosphatidylserine in glioma C6 cells.](image)

The cells were incubated under conditions described in Materials and Methods. Results are expressed as percentage of the incorporation in untreated (control) cells which amounted to 1500 ± 200 d.p.m./dish. All values are means ±S.E.M. of three experiments done in triplicate. Asterisks indicate statistical significance with respect to the control ("**P < 0.01, Student’s t-test).
concentration increased phosphatidylserine synthesis more than twofold and such high response was maintained at all concentrations examined (Fig. 1B). Still, it seemed that the difference in the profile of this increase for both compounds was quantitative rather than qualitative; to obtain the same effect much more sphingosine than sphingosylphosphorylcholine was needed. The increase in phosphatidylserine synthesis in the presence of sphingosine and sphingosylphosphorylcholine was observed in the absence of change in the total uptake of $[^{14}C]$serine by the cells (not shown).

Figure 2A shows a lack of the effect of the amphiphilic anion, sphingosine 1-phosphate, on $[^{14}C]$serine incorporation into phosphatidylserine. Sphingosine 1-phosphate, at all concentrations used (1, 10 and 100 μM), was without effect. Small differences with respect to control (untreated cells) were statistically insignificant (Fig. 2A). On the other hand, addition of sphingosine 1-phosphate to the assay medium strongly decreased the formation of phosphatidylethanolamine (Fig. 2B). A comparison between control and sphingosine 1-phosphate treated cells indicated a significant decrease in labeling of phosphatidylethanolamine at 100 μM sphingosine 1-phosphate ($P < 0.05$) (Fig. 2B).

The reduced conversion of phosphatidylserine into phosphatidylethanolamine was also observed in cells treated with sphingosine or sphingosylphosphorylcholine. The percentage of phosphatidylserine metabolized into phosphatidylethanolamine was similarly decreased in cells treated with 100 μM concentration of either compound (Table 1). It is worth noting that, in the experimental protocol used, phosphatidylserine may be decarboxylated to phosphatidylethanolamine and the latter can be methylated to phosphatidylcholine. However, during 30 min incubation of the cells with $[^{14}C]$serine, labeling in phosphatidylcholine was not detectable. Thus, the percentage of radioactivity found in labeled phosphatidylethanolamine represents the activity of phosphatidylserine decarboxylase. Table 1 shows that all amphiphilic compounds tested inhibit this metabolic pathway.

DISCUSSION

Studies on microsomal membranes from rat brain [14], rat liver [8], human platelets [15],
and glioma C6 [8] have demonstrated that a number of drugs belonging to amphiphilic cations have a stimulatory, and anions an inhibitory, effect on phosphatidylserine synthesis. The regulation of serine base exchange activity by amphiphilic cations has been explained by Kanfer & McCartney [14] as a result of rearrangement of membrane phospholipids, serving as substrates for the serine base exchange enzyme. In addition, we have suggested [8] that amphiphilic cations interact electrostatically with such phospholipids, thereby reducing the negative charge on their phosphate groups and facilitating the enzyme action. Amphiphilic anions would interfere with such interaction [8].

Nevertheless, one can assume that amphiphilic compounds added exogenously to intact cells could affect phosphatidylserine synthesis in a quite different manner than that found in the microsomal fraction. Although it has been demonstrated that cationic amphiphilic drugs (and among them sphingosine) stimulate the incorporation of labeled serine into phosphatidylserine in various cell lines [8, 16–19], such phenomenon may not occur for compounds being quickly metabolized in the cell. A representative example is sphingosine 1-phosphate which, added exogenously to cells, may be rapidly dephosphorylated to sphingosine by phosphatidate phosphohydrolase [20].

Brindley & Waggner [20] have recently described that this multifunctional phosphohydrolase, identified in the plasma membrane, can specifically dephosphorylate phosphatidate, lysophosphatidate, ceramide 1-phosphate and sphingosine 1-phosphate. The active site of the enzyme was found in the outer leaflet of the plasma membrane. Thus, sphingosine 1-phosphate present in blood and acting as the first messenger [4–6], or added externally to cultured cells, may be rapidly converted into sphingosine which is characterized by other signalling and physicochemical properties [20]. Moreover, sphingosine, the product of this reaction, inhibits phosphatidate phosphohydrolase and can be phosphorylated by sphingosine kinase to form sphingosine 1-phosphate [1, 20]. Thus, phosphatidate phosphohydrolase and sphingosine kinase could regulate the balance of sphingosine and sphingosine 1-phosphate in the cell.

Table 1. Effect of various concentrations of sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate on phosphatidylethanolamine formation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>μM</th>
<th>[14C]Phosphatidylethanolamine formed (% of total incorporation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cells, no addition</td>
<td></td>
<td>10 ± 1</td>
</tr>
<tr>
<td>+ sphingosine</td>
<td>25</td>
<td>7 ± 1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3 ± 0.4</td>
</tr>
<tr>
<td>+ sphingosylphosphorylcholine</td>
<td>15</td>
<td>5 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4 ± 0.5</td>
</tr>
<tr>
<td>+ sphingosine 1-phosphate</td>
<td>1</td>
<td>8 ± 1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4 ± 0.5</td>
</tr>
</tbody>
</table>

The cells were incubated for 30 min with [14C]serine as described in Materials and Methods in the absence or presence of various concentrations of sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate. After incubation phospholipids were extracted and separated on TLC. The sum of radioactivity found in phosphatidylserine and phosphatidylethanolamine was taken as 100%. The data are means ±S.E.M. for five (sphingosine) and three (sphingosylphosphorylcholine and sphingosine 1-phosphate) individual experiments done in triplicate.
The results of the present study are compatible with the above data. Sphingosylphosphorylcholine, even at low concentration, is able to increase a phosphatidylserine synthesis, whereas sphingosine needs a much higher concentration to exert a similar effect (Fig. 1). We suggest that this result and the lack of the response of the cells to sphingosine 1-phosphate (Fig. 2A) may be explained in the light of the conversion of sphingosine to sphingosine 1-phosphate and sphingosine 1-phosphate to sphingosine and the balance between substrates and products of both reactions, regulated by the activity of enzymes and the amount of substrates added to the cells.

The present study also shows that all amphiphilic compounds strongly diminish the conversion of phosphatidylserine to phosphatidylethanolamine (Table 1). A similar effect of amphiphilic cationic drugs has been reported in neuronal cell line, LA-N-2 [18]. Amphiphilic compounds alter properties of the membrane, affecting fluidity, order and charge [21]. Most probably, such changes make difficult the physical contact between the endoplasmic reticulum and mitochondria [22] and prevent phosphatidylserine decarboxylation.

Thus, it seems that bioactive endogenous amphiphilic compounds such as sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate may not only activate or inhibit several enzymes [23] but, due to their physicochemical features, may subtly modify lipid metabolism including that of phosphatidylserine. Since phosphatidylserine is involved in protein kinase C activation [24], stimulation of its synthesis may play a modulatory role in cell signalling and hence in cell function.

REFERENCES

