Review

Mitochondria, oxidative stress, and antioxidant defences*

Giorgio Lenaz**, Carla Bovina, Gabriella Formiggini and Giovanna Parenti Castelli

Dipartimento di Biochimica "G. Moruzzi", Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy

Received: 11 February, 1999

Key words: mitochondria; oxidative stress; antioxidants; coenzyme Q; apoptosis; ageing; platelets, lactate production

Mitochondria are strongly involved in production of reactive oxygen species, considered today as the main pathogenic agent of many diseases. A vicious circle of oxidative stress and damage to cellular structures can lead to either cell death by apoptosis or to a cellular energetic decline and ageing. The early involvement of mitochondria in apoptosis includes expression of pro-apoptotic factors, release of cytochrome c from the inter-membrane space and opening of the permeability transition pore; cytochrome c release appears to precede pore opening. The mitochondrial theory of ageing considers somatic mutations (deletions) of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, Complex I appears to be mostly affected. We have developed the Pasteur effect (enhancement of lactate production by mitochondrial inhibition) as a bio-marker of mitochondrial bioenergetics in human platelets, and found it to be decreased in aged individuals. Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants coenzyme Q is the only one of endogenous biosynthesis; exogenous coenzyme Q, however, may protect cells from oxidative stress in vivo.

The occurrence of oxidative stress, caused by reactive oxygen species (ROS), is considered today as the main etiological and/or patho-

*The original work reported here was supported in part by a special grant from the University of Bologna and by a project of national interest "Bioenergetics and Membrane Transport" from MURST, Rome, Italy.
**Correspondence to: Prof. Giorgio Lenaz, Dipartimento di Biochimica "G. Moruzzi", Via Irnerio 48, 40126 Bologna, Italy, tel.: (39 051) 351 229; fax: (39 051) 351 217; e-mail: lenaz@biocfarm.unibo.it
Abbreviations: AAPH, 2,2'-azobis-2-amidopropane; CoQ, coenzyme Q; mtDNA, mitochondrial DNA; ROS, reactive oxygen species.
of cell structures accompanying ageing (Harman, 1988; Shigenaga et al., 1994; Lenaz, 1998a). Thus, the first energy source of aerobic organisms, oxygen, is also the basis of ageing and death.

Mitochondria are major producers of ROS by the respiratory chain (Chance et al., 1979), and at the same time they are very vulnerable in their sophisticated machinery for oxidative phosphorylation (Ernster, 1993); thus, research has largely focused on mitochondria in order to understand ROS biochemistry and pathology. In addition, two major developments opened breakthroughs in the involvement of mitochondria in pathology, i.e. the discovery that mitochondrial DNA (mtDNA) mutations are at the basis of human diseases (Schapira, 1997), and the role, previously unexpected, of mitochondria in the mechanisms of cell death (Bernardi, 1998).

Among the cellular sources of ROS, the mitochondrial respiratory chain is perhaps the most powerful (Boveris et al., 1976): it was calculated that 1-4% of oxygen reacting with the respiratory chain is incompletely reduced to superoxide anion and hence to hydrogen peroxide (Richter, 1988). Production of ROS may increase in respiratory State 4 with respect to State 3 (Boveris & Chance, 1973), or also when cytochrome oxidase activity is lowered (Sohal, 1993), because in both instances oxygen concentration increases and the level of reduced one-electron donors in the chain is concomitantly increased, enhancing their reaction with oxygen (Skulachev, 1996; Papa & Skulachev, 1997). According to Skulachev (1996), uncoupling of electron transfer chains, by raising the rate of oxygen consumption, may represent a device for decreasing ROS production in mitochondria. ROS production by the respiratory chain is also increased after anoxia and re-perfusion (Downey, 1990; Downey et al., 1991); one additional reason may be that the anoxic period, by depleting ATP, induces damage and release of catalytic metals (Hershko, 1992), such as iron and copper, which are abundant in the inner mitochondrial membrane and are known to enhance the effect of ROS.

All biological molecules may be modified by ROS; their aggressive behaviour is bound to damage first those molecules which are nearest to the site of production: mitochondrial structures, therefore, are also believed to represent major targets of oxidative stress (Ernster, 1993). Lipid peroxidation (Ernster, 1993; Gardner, 1989), protein oxidation (Stadtman, 1993), and DNA damage (Richter et al., 1988; Dizdaroglu, 1991) are all consequences of oxidative stress at the level of mitochondria. Whatever the initial damage, be it directly in protein, or indirectly in the lipid environment (Lenaz & Degli Esposti, 1994), or in the encoding sequence of DNA, it will be anyway a functional protein alteration to ensue, with failure of enzymatic, transport, or receptor systems.

A vicious circle of oxidative stress and damage of cellular structures (Ozawa, 1995; 1997) has been postulated to occur: since any damage to the respiratory chain may induce enhancement of ROS production, whatever the initial alteration a progressive and continuous perpetuation of the damage will be the inevitable consequence, with amplification of the original defect through somatic mutations of mtDNA, and defective mtDNA encoded proteins. It is plausible that an acute stress would trigger a mechanism inducing cell death, whereas a milder stress may slowly induce impairment of cell function, as in ageing (Lenaz, 1998a) (Fig. 1).

This review will be divided into three parts. In the first part we will consider the major role of mitochondria and oxidative stress in apoptotic cell death; the second part will deal with evidence about the involvement of mitochondria in the ageing process; finally, the battery of instruments the cells contain to counteract oxidative stress will be considered.

We will restrict our discussion largely to work performed in our own laboratory and discuss it in the light of recent literature; this paper, therefore, is not intended to represent
a complete survey of the literature in the field.

MITOCHONDRIA, OXIDATIVE STRESS, AND APOPTOSIS

Apoptosis is a form of cell death requiring a well-defined chain of enzymatic events which are genetically programmed (Kroemer et al., 1995); in this requirement, apoptosis differs from necrosis, although both types of cell death can derive from the same exogenous and endogenous insults (Wyllie et al., 1980; Shimizu et al., 1996). A recent, exciting, development has been the discovery that mitochondria are deeply and early involved in the apoptotic cascade (Susin et al., 1998, for review) (Fig. 2). The release of cytochrome c from the inter-membrane space (Krippner et al., 1996; Liu et al., 1996; Yang et al., 1997; Kluck et al., 1997; Cai et al., 1998) activates caspase-3, a protease whose activation also requires a protein called Apaf-1, and is inhibited by Bcl-2 and similar proteins. The proteins of the Bcl-2 family (Hockenbery et al., 1990; Reed et al., 1998) are localised in the outer membrane, where pro-apoptotic proteins such as Bax and Bad, structurally related to the former, are also present. Also opening of the so-called permeability transition pore (Bernardi, 1996), a mega-channel of the inner mitochondrial membrane of still uncertain identification, is a fundamental step in apoptosis (Marchetti et al., 1996). Its opening induces mitochondrial depolarisation and swelling (Bernardi & Petronilli, 1996). The relation between cytochrome c release and pore opening is still controversial (Cai et al., 1998); whether the latter phenomenon, with swelling and rupture of the outer membrane, is the cause of cytochrome c release, whether cytochrome c loss and consequent decrease of respiration induce depolarisation and pore opening, or whether they are two independent phenomena. Oxidative stress may be an intrinsic component of the apoptotic cascade (France-
Lanord et al., 1997; Susin et al., 1998; Nicholls & Budd, 1998) and is known to cause apoptosis (Petit et al., 1996).

To better understand the steps involved in apoptosis at the mitochondrial level, we have investigated apoptosis induced by a free radical initiator in neuroblastoma cultured cells; in our hands this system has proven to act slowly, thus allowing to establish the time course of different events (Lenaz et al., 1998).

After addition of 200 μM 2,2′-azobis-2-amidinopropane (AAPH), an increase of ROS occurred very early with a peak followed by a steady-state period after about 6 h from the initiator; apoptotic death started after 30 h, preceded by a fall of mitochondrial membrane potential (ΔΨmit) after 24 h (Figs. 3 and 4). Nevertheless, release of cytochrome c from mitochondria to cytoplasm was maximal already at 12 h from the oxidative stress (Table 1). Thus, in the above system, cytochrome c release is an earlier event than the opening of the permeability transition pore, that is the likely cause of mitochondrial potential collapse.

The mechanism by which cytochrome c is released from the inter-membrane space is unknown; it has been suggested that pro-apoptotic proteins, such as Bax, can form large channels in the outer membrane (Reed et al., 1998); alternatively, the outer membrane itself might be ruptured allowing loss of soluble proteins from the inter-membrane space (Vander Heiden et al., 1997; Schendel et al., 1997).

MITOCHONDRIA AND AGEING

The progressive decline of cell functions accompanying senescence has been attributed to either a genetic program inborn in all organisms or to stochastic errors occurring at random in somatic cells and leading to a final collapse of their functions (Medvedev, 1990). Among the stochastic theories, the free radical theory of ageing (Harman, 1956; 1983) was based on the idea that cells, continuously exposed to ROS, are progressively damaged in their most vital macromolecules. The implications of mitochondria both as producers and as targets of ROS has been the basis for the mitochondrial theory of ageing (Miquel et al., 1980; Limnane et al., 1989); the theory postulates that random mtDNA alterations in somatic cells are responsible for the energetic decline
accompanying senescence. It is proposed that accumulation of somatic mutations of mtDNA, induced by exposure to ROS, leads to errors in the mtDNA-encoded polypeptides; these errors are stochastic and randomly transmitted during mitochondrial division and cell division. The consequence of these alterations, which affect exclusively the four mitochondrial complexes involved in energy conservation (Table 2), would be defective electron transfer and oxidative phosphorylation. Respiratory chain defects may become associated with increased ROS production, thus establishing a vicious circle (Ozawa, 1995), described in Fig. 1.

A proof of the existence of a vicious circle of oxidation and mtDNA damage requires demonstration that ROS production and their effects increase in ageing.

The inverse relation existing of both ROS production and metabolic rate with normal life-span of different animal species (Cutler, 1985; Sohal et al., 1995; Agarwal & Sohal, 1994) is in line with this postulate, suggesting that mitochondria, as the sites of oxygen consumption, must be deeply involved in the ageing process. Moreover, it was indeed shown that hydrogen peroxide generation increases with age (Sohal et al., 1995; Sastre et al., 1996; Hagen et al., 1997). In isolated rat hepatocytes we have shown that hydrogen peroxide production is higher and the effect of an oxidative stress by adriamycin is much stronger in cells isolated from older rats than from young animals (Fig. 5).

Increased production of ROS in ageing is also inferred from the increase of oxidised cellular components with age (Rice-Evans &
Table 1. Effect of oxidative stress on SH-SY5Y differentiated cells (Lenaz et al., 1996)

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Peroxide content* (pmol/10^6 cells)</th>
<th>Bax protein content**</th>
<th>Cytochrome c released***</th>
<th>ΔΨ_mit****</th>
<th>Apoptotic death*****</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Treated</td>
<td>Control</td>
<td>Treated</td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td>0.7 ± 0.2</td>
<td>0.8 ± 0.2</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3.5 ± 0.3</td>
<td>52.3 ± 5.8</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>2.7 ± 0.4</td>
<td>46.2 ± 4.3</td>
<td>+</td>
<td>+++++</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>4.1 ± 0.5</td>
<td>38.1 ± 4.1</td>
<td>+</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>2.6 ± 0.4</td>
<td>25.8 ± 2.9</td>
<td>+</td>
<td>+++</td>
<td>-</td>
</tr>
</tbody>
</table>

*Free radical content was determined as dichlorofluorescin-derived green fluorescence and quantitatively converted through a calibration curve. **Bax protein was determined by immunoblotting using the monoclonal antibody sc-1716 (Santa Cruz Biotechnology). ***Cytochrome c was measured by immunoblotting using the monoclonal antibody 7H8.2C12 (Pharminogen). ****ΔΨ_mit was measured as Rhodamine-123 uptake. *****Apoptotic cells were quantified by Hoechst-33342 staining or TUNEL.

Diplock, 1993; Diplock, 1994; Stadtman, 1993; Ozawa, 1997). Among the damaged molecules, mtDNA is most important for the mitochondrial theory. The search for point mutations in mtDNA in ageing has led to controversial results (Schon et al., 1996; Pallotti et al., 1996); on the other hand, large deletions have been consistently found in aged individuals (Schon et al., 1996). Considering the total number of deletions, it is suggested that they account for such an amount to overcome the threshold required for decreasing the respiratory chain activity. Ageing is accompanied by progressive fragmentation of mtDNA, formation of mini-circles and progressive cell death by apoptosis (Yoneda et al., 1995; Ozawa, 1995; 1997).

The finding of extensive deletions in ageing and the notion that oxidative stress can induce deletions (Shigenaga et al., 1994; Yoneda et al., 1995; Yakes & Van Houten, 1997) is no proof per se that oxidative stress is involved: in fact mtDNA deletions can arise from altered nuclear–mitochondrial interactions, as in an autosomal dominant form of PEO (paralysis of extra-ocular muscles) (Zeviani et al., 1989), indicating that a nuclear gene product affects the proclivity of mtDNA to suffer deletions.

The observation that oxidative phosphorylation defects in cultured cells from aged donors could be reversed by constructing cybrids (cytoplasmic hybrids), where the nucleus of the old donor was substituted by a nucleus from an immortalised cell (Hayashi et al., 1994), suggested that a nuclear mutation.

![Figure 5. Increase of oxidative stress in ageing.](image)

The figure shows peroxide production in hepatocytes isolated from adult (6 months) and old (24 months) rats and the effect of an oxidative stress induced by adriamycin. Peroxide production was determined by the fluorescent probe dichlorofluorescin diacetate (unpublished data from our laboratory). Ctr, control; Adr, adriamycin treated.
Table 2. Polypeptides encoded by mtDNA

<table>
<thead>
<tr>
<th>Mitochondrial enzyme</th>
<th>H⁺ pumping</th>
<th>Subunits encoded by mtDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex I (NADH-CoQ reductase)</td>
<td>+</td>
<td>ND1, ND2, ND3, ND4, ND4L, ND5, ND6</td>
</tr>
<tr>
<td>Complex II (succinate CoQ reductase)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Complex III (ubiquinol cytochrome c reductase)</td>
<td>+</td>
<td>cytochrome b</td>
</tr>
<tr>
<td>Complex IV (cytochrome c oxidase)</td>
<td>+</td>
<td>CO I, CO II, CO III</td>
</tr>
<tr>
<td>ATP synthase</td>
<td>+</td>
<td>ATPase-6, ATPase-8</td>
</tr>
</tbody>
</table>

might be responsible for the mitochondrial deficit; although a subsequent study demonstrated formation of respiratory-deficient clones having decreased mtDNA by fusing mitochon-

The search for age-dependent changes in mitochondrial bioenergetics has produced a plethora of conflicting results, reporting either significant changes or no differences (cf. Hansford, 1983; Lenaz, 1998). There may be several reasons for explaining such conflicting data (Lenaz, 1998a).

First, it has been theorised that mtDNA mutations are expected to accumulate and to lead to damage mainly in post-mitotic cells (Miquel, 1992), where oxidative metabolism is very elevated as in neurones or is subjected to bursts as in skeletal muscle; moreover, in such cells, the lesions could be conserved, at difference with mitotic cells where division leads to selection and washing away of deficient cells (Byrne et al., 1991). Mitochondria, when isolated, are obtained from tissues containing both differentiated non-dividing cells and relatively non-ageing dividing cells; thus small changes in one population only may become undetectable; furthermore energy-

deficient cells may undergo elimination by apoptosis (Lawen et al., 1994); the continuous cell loss when mitochondria become deficient would prevent observing important energetic changes in the remaining population. The best demonstration of bioenergetic alteration in mtDNA-encoded proteins has been the histochemical detection of a loss of cytochrome c oxidase activity (but not of succinate dehydrogenase) in muscle mitochondria from old individuals (Müller-Höcker et al., 1992); the mosaic distribution of the cytochrome oxidase deficient fibres agrees with the stochastic distribution of mitochondrial damage expected from the mitochondrial theory (Linnane et al., 1989).

If the energetic impairment derives from a stochastic damage to the mitochondrial genes, then it is important to select the mitochondrial activity which is more likely to be affected. Since 7 out of the 13 polypeptides encoded by mtDNA belong to Complex I (NADH-coenzyme Q reductase), it is expected that this enzyme should be mostly affected by ageing (Lenaz et al., 1997). The so-called ND sub-units, encoded by mtDNA, are involved in binding of the electron acceptor, i.e. coen-

zyme Q (CoQ, ubiquinone) and of several inhibitors, such as rotenone, and most probably in the mechanism of energy conservation by proton translocation (Degli Esposti & Ghelli, 1994; Brandt, 1997).

Complex I activity is investigated using low relative molecular mass quinones (Lenaz, 1998b), which are homologues or analogues of the natural acceptor, a long isoprenoid chain ubiquinone, which is CoQ₁₀ in man and
most mammals, and largely CoQ$_9$ in rodents (Ramasarma, 1985). The overall rate of the respiratory chain is hyperbolically related to the rate of reduction of the CoQ pool and to the rate of its re-oxidation by the pool equation (Kröger & Klingenberg, 1973): since problems exist in the correct evaluation of Complex I activity with the artificial acceptors (Estornell et al., 1993; Fato et al., 1996), we have preferred, when possible, to use the pool equation to calculate Complex I activity in liver and heart of aged rats (Genova et al., 1995) (Table 3); the experimental rates of NADH-CoQ$_1$ reductase activity were underestimated, whereas the rates calculated from the pool equation showed clear decreases of activity in the aged animals.

Table 3. Experimental and calculated Complex I activities of liver and heart mitochondria from 6- and 24-month-old rats (Genova et al., 1995)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Liver</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-month</td>
<td>24-month</td>
</tr>
<tr>
<td>NADH-O$_2$</td>
<td>$0.157 \pm 0.037$</td>
<td>$0.191 \pm 0.043$</td>
</tr>
<tr>
<td>NADH-DB</td>
<td>$0.154 \pm 0.021$</td>
<td>$0.120 \pm 0.041$</td>
</tr>
<tr>
<td>NADH-CoQ (calculated*)</td>
<td>$0.226 \pm 0.065$</td>
<td>$0.134 \pm 0.081$</td>
</tr>
</tbody>
</table>

*From the pool equation, see text.

In non-synaptic mitochondrial particles from rat brain cortex (Genova et al., 1997), we found that the aerobic NADH oxidation is significantly decreased, suggesting a Complex I defect; the relevance of NADH oxidation to Complex I activity, however, requires that the activity of Complex I is rate-limiting over the whole respiratory chain, otherwise threshold effects would be present (Davey & Clark, 1996; Kuznetsov et al., 1997).

The metabolic control theory (Kacser & Burns, 1979) determines the control that various steps in a pathway have over the global flux of the same pathway; the flux control coefficient is defined as the fractional change in pathway flux induced by a fractional change in an individual step; values approaching 1 indicate that the step is rate-limiting, values approaching zero indicate that the step is not rate-limiting. Following NADH oxidation in our system we found a very similar rotenone inhibition curve in NADH oxidase and NADH-CoQ reductase activity, with a flux control coefficient approaching 1 in both mitochondria from young and old rats (Fig. 6), indicating that Complex I is rate-limiting over the entire respiratory chain in both types of animals, and therefore the NADH oxidase activity is a reflection of Complex I activity alone (Lenaz et al., 1998).

In non-synaptic mitochondria from brain cortex of old rats, in addition to the decrease of NADH oxidation rate, we also found a decrease of its rotenone sensitivity (Genova et al., 1997), evidenced as an increase of the I$_{50}$, the inhibitor concentration eliciting 50% inhibition of activity (Table 4). Since rotenone, as well as most Complex I inhibitors, bind the hydrophobic ND subunits (Degi Esposti, 1998), this finding would be in line with the mitochondrial theory. No major changes were found in synaptic mitochondria (Genova et al., 1997), an unexpected difference whose explanation may be that they have a lower respiration rate and would therefore be less exposed to ROS attack; another explanation could be that only healthy non-damaged mitochondria migrate by axonal flow from the cell body to the synapse.
HUMAN PLATELETS AS BIO-MARKERS OF AGEING

The search for a sensitive marker of ageing in man, representing an individual index of biological age and predisposition to age-related diseases, must consider mitochondrial function; since such a function may only be investigated in cells containing mitochondria, blood platelets may represent a unique system (Holmsen, 1987), in that they possess mitochondria and may be easily collected by non-invasive procedures. Moreover, platelets were proposed as a possible marker of acquired neurological diseases, bearing some biological similarities with neurones (Da Prada et al., 1988). The rational use of platelets as a bio-marker of mitochondrial lesions (Schapira, 1998a, b) rests on the assumption that alterations occurring in senescence and in age-related diseases be present in all cells, and that platelets may signal generalised bioenergetic deficiencies (Lenaz et al., 1998).

It is known that platelets yield energy for their functions by both glycolysis and mitochondrial oxidative phosphorylation (Holmsen, 1987): the main function of platelets is their energy-dependent aggregation process (De Gaetano, 1981), a part of the mechanism of blood clotting, physiologically elicited via exocytosis of their secretory granules.

An alteration of Complex I activity in platelet mitochondria in aged individuals is indicated by the increase of \( I_{50} \) of rotenone inhibition (Merlo Pich et al., 1996), similar to that detected in rat brain cortex mitochondria. Since, as already mentioned, rotenone binds subunits of the enzyme involved in proton translocation, the altered inhibitor sensitivity may represent an indication of altered energy conservation. Accordingly, the mitochondrial contribution to energy-dependent platelet aggregation decreased in the aged (Lenaz et al., 1998). The rate of the irreversible phase of platelet aggregation induced by ADP was taken as an index of bioenergetic competence of the cells.

Platelet aggregation can be partially inhibited by the respiratory chain inhibitor, antimycin A: the sensitivity of aggregation to antimycin was significantly decreased in old individuals with respect to young controls, suggesting that energy for aggregation is provided more and more by glycolysis in the old population.

This interesting result is however not likely to quantitatively indicate the loss of mitochondrial function, since inhibition of aggregation would depend upon the extent to which total cellular ATP is rate-limiting for aggregation, and how much glycolytic substrate-level phosphorylation compensates the decrease of oxidative phosphorylation (cf. Holmsen et al., 1974). A quantitative determination of glycolytic and mitochondrial ATP can be provided by the Pasteur effect (Holmsen & Robkin,

![Figure 6. Flux control of NADH oxidation in rat brain cortex non-synaptic mitochondria (cf. Lenaz et al., 1998).](image)

The figure shows the stepwise inhibition by rotenone of NADH-CoQ reductase (○) and of NADH oxidase (●). The inset is a plot of NADH oxidase rates against inhibition of Complex I activity after rotenone titration. Flux control coefficients were calculated as described elsewhere (Lenaz et al., 1998). The curves were almost identical for adult and old animals.
1980): a decreased mitochondrial function stimulates glycolysis in order to maintain a constant ATP synthesis, and meanwhile pyruvate is reduced to lactate to regenerate oxidised pyridine nucleotides. Since glycolysis in the absence of mitochondrial function yields two ATP and two lactate molecules per glucose broken down, it follows that stimulation of lactate production by inhibition of respiration is equivalent to the correspondingly inhibited mitochondrial ATP production.

Lactate production by washed platelets is strongly enhanced by antimycin A inhibition of mitochondrial respiration; the Δ-lactate production in presence and absence of antimycin A represents the amount of ATP produced via oxidative phosphorylation, whereas the basal lactate production represents glycolytic ATP (Holmsen, 1987) (Table 5). Both the Δ-lactate and the ratio of oxidative ATP over glycolytic ATP are significantly decreased in aged individuals (Table 6).

The site of the mitochondrial bioenergetic lesion is probably respiratory Complex I, as shown by the decreased rotenone sensitivity of this enzyme in the aged (Merlo Pich et al., 1996). The fact that the "common" deletion of mtDNA (Schon et al., 1996), detected in all post-mitotic tissues investigated so far, is absent in platelets (Biagini et al., 1998), would both agree and contrast the mitochondrial theory; in fact the theory expects mtDNA to be affected in post-mitotic tissues but not in mitotic or short-lived cells (Miquel, 1992); on the other hand a Complex I defect has been detected: such a defect, following this line of reasoning, should not result from mtDNA deletions. Thus mtDNA cannot be the sole cause of bioenergetic defects detected in ageing (Lenaz, 1988a); a decreased stability of Complex I, leading to decreased rotenone sensitivity and to decreased energy conservation, could be alternatively due to direct damage of the enzymatic proteins or of the lipid environment of the enzyme (Lenaz, 1998a): to this respect, the reported decrease of cardiolipin

Table 4. Biochemical parameters in nonsynaptic mitochondria from rat brain cortex (cf. Genova et al., 1997)

<table>
<thead>
<tr>
<th>Age (Months)</th>
<th>Mitochondrial yield (mg protein/g tissue)</th>
<th>NADH oxidase activity (nmol/min × mg protein)</th>
<th>NADH-ferricyanide reductase (μmol/min × mg protein)</th>
<th>I₀₀ of rotenone (corrected)</th>
</tr>
</thead>
</table>

Free nonsynaptic mitochondria were purified from brain cortex of single animals and assayed for NADH oxidation according to Genova et al. (1996). The I₀₀, i.e. the inhibitor concentration eliciting half-inhibition, was taken as an indicator of Complex I sensitivity to rotenone. The specific activity of ferricyanide reduction was used as a parameter proportional to the content of active Complex I in the membrane. (μmol rotenone/mg protein)/(NADH ferricyanide reductase).

Table 5. Lactate production in human platelets.

Typical example of platelets from a young individual.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Lactate (μmol / 10¹¹ cells × min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (glycolytic ATP)</td>
<td>0.18</td>
</tr>
<tr>
<td>+ Antimycin A</td>
<td>4.57</td>
</tr>
<tr>
<td>Δ-Lactate (mitochondrial ATP)</td>
<td>4.39</td>
</tr>
<tr>
<td>Mitochondrial ATP</td>
<td>4.39</td>
</tr>
<tr>
<td>Glycolytic ATP</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Glucose flux through anaerobic glycolysis

0.18-2* = 0.09 μmol / min per 10¹¹ cells (43%)
4.39-36** = 0.12 μmol / min per 10¹¹ cells (57%)

*ATP yield/glucose in anaerobic glycolysis.
**Mean ATP yield/glucose in oxidative phosphorylation.
content in the aged (Paradies et al., 1992) was accompanied by decreased cytochrome oxidase activity (Paradies et al., 1997a,b).

The use of the Pasteur effect as a bio-marker is independent of the primary site of the mitochondrial change in platelets from aged individuals and is able to recognise any mitochondrial alteration inducing decreased ATP synthesis.

**ANTIOXIDANT DEFENCES: ROLE OF COENZYME Q**

Cells contain enzymatic systems capable to convert ROS into less toxic or non-toxic species (Diplock, 1994); the co-ordinate action of superoxide dismutase and peroxidases (glutathione peroxidase being of particular importance) detoxifies superoxide to water; if the action of superoxide dismutase is however not accompanied by that of peroxidases, the accumulation of hydrogen peroxide would rather induce production of the damaging hydroxyl radical by means of the Fenton reaction (Ceballos-Picot et al., 1991; Croft et al., 1992).

Other defence systems include metal-binding proteins, preventing the pro-oxidant action of heavy metals, metabolic intermediates acting as free radical scavengers, and antioxidants largely taken in the organism by nutrition, such as ascorbic acid, vitamin E, carotenies, polyphenols, flavonoids etc. (Diplock, 1994).

Among antioxidants, a special position is held by coenzyme Q (CoQ10 in man (Ramasarma, 1985)), the only lipid-soluble antioxidant which is normally synthesised by the organism (Elmberger et al., 1987; Appelkvist et al., 1994). Its strong hydrophobicity, due to the long isoprenoid chain at the 6-position, makes it inserted in the membrane phospholipid bilayer (Fato et al., 1986; Lenaz, 1988; Samori et al., 1992; Lenaz et al., 1992; 1994), probably in a folded conformation, as suggested by computer simulation and molecular modelling (Di Bernardo et al., 1998); such a folded structure makes the CoQ molecule more readily diffusible in the phospholipid bilayer (Lenaz et al., 1999) (Fig. 7), where its lateral diffusion is required for electron transfer between flavoprotein enzymatic complexes and Complex III of the mitochondrial respiratory chain (Lenaz, 1988).

The biosynthesis of CoQ is particularly complex (Andersson et al., 1994); the benzoquinone ring is synthesised from the essential amino acid phenylalanine up to 4-hydroxybenzoate, whereas the isoprenoid chain is formed by a pathway common to that of cholesterol and dolichol biosynthesis (Ernst & Dallner, 1995). CoQ biosynthesis requires the dietary intake of several vitamin cofactors: it is therefore conceivable that one or more such factors may become limiting under physiological or pathological conditions (Appelkvist et al., 1994), thus slowing down ubiquinone biosynthesis and inducing a ubiquinone deficiency state.

**Table 6. Lactate production in platelets from young and aged individuals**

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>AA</th>
<th>Δ lactate (AA - Ctrl)</th>
<th>oxidative ATP / glycolytic ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μmol lactate /min × 10¹¹ cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young [26]</td>
<td>0.45 ± 0.28</td>
<td>4.18 ± 1.04</td>
<td>3.73 ± 1.19</td>
<td>26.46 ± 57.94</td>
</tr>
<tr>
<td>Aged [26]</td>
<td>0.65 ± 0.78</td>
<td>3.47 ± 0.85</td>
<td>2.62 ± 0.89</td>
<td>5.41 ± 4.94</td>
</tr>
<tr>
<td>P</td>
<td>0.021</td>
<td>0.009</td>
<td>0.0002</td>
<td>0.089</td>
</tr>
</tbody>
</table>
Besides its bioenergetic role, as a component of the mitochondrial respiratory chain, CoQ is also a component of extra-mitochondrial redox chains (Crane & Navas, 1997), whose function, among others, would be to remove excess of reducing power formed by glycolysis when mitochondrial respiration is decreased (Lawen et al., 1994; Larm et al., 1994).

The role of CoQ in relation with ROS is intriguing: in spite of the CoQ intermediates in the function of Complexes I and III being considered as the source of one-electron oxygen reduction (Skulachev, 1996), ubiquinone in its reduced form is a powerful antioxidant. As an antioxidant, the reduced form of CoQ is exploited either directly upon superoxide or indirectly on lipid radicals (Beyer & Ernst, 1990; Beyer, 1994; Ernst & Dallner, 1995); ubiquinol can also act together with vitamin E (α-tocopherol) by re-generating the active form from the tocopheroxyl radical (Kagan et al., 1990; Ernst et al., 1992).

The antioxidant action of ubiquinol yields the ubisemiquinone radical; this species is converted back to its antioxidant form by re-reduction, which occurs through the electron transfer chain in mitochondria, and is operated by various quinone reductases present in different cell fractions (Navarro et al., 1995; Villalba et al., 1995; Beyer et al., 1996; 1997; Takahashi et al., 1995; 1996; Arroyo et al., 1999).

Ubiquinone may be transformed from a safe electron carrier to a superoxide generator when the ubisemiquinone anion, arising from one-electron oxidation of ubiquinol, becomes accessible to protons (Nohl et al., 1996): such a condition may originate from changes in membrane structure.

A study on isolated rat hepatocytes clearly showed the antioxidant effect of exogenously
added CoQ_{10} \text{(Beyer et al., 1996). The anti-
cancer quinone glycoside, adriamycin, in-
duces an oxidative stress by enhancing ROS
production in mitochondria and endoplasmic
reticulum. In hepatocytes, adriamycin en-
hances ROS production; concomitantly en-
dogenous CoQ is re-oxidised and the mito-
ochondrial membrane potential falls. Incubation
of the cells with exogenous CoQ_{10} pre-
vents ROS formation and protects both re-
duced CoQ and \Delta \Psi_{\text{mit}} \text{(Table 7). The cytosolic}
enzyme DT-diaphorase seems to be responsi-
ble for reduction of both endogenous and ex-
genous CoQ, as shown by the effect of dicou-
marol, an inhibitor of DT-diaphorase, pre-
venting the protective action of exogenous
CoQ addition \text{(Beyer et al., 1996; 1997).}

If ageing is the result of prolonged oxidative
stress, an adequate antioxidant supply might
contrast the process. The content of vitamin
antioxidants depends on dietary intake, and
may be subjected to decreases due to intesti-
nal absorption defects and bad dietary habits
of the aged. CoQ, being synthesised, is a spe-
cial case. Some studies have shown a CoQ de-
crease with age \text{(Beyer et al., 1985; Kalen et
al., 1990; Genova et al., 1995); however, this
is not true for brain, where high levels are
maintained throughout ageing \text{(Söderberg et
al., 1990; Battino et al., 1995} in accordance
with the steady level of nonaprenyl-4-
hydroxybenzoate transferase \text{(Andersson et
al., 1995). Nevertheless, even if the levels of
CoQ and other antioxidants do not dra-
matically fall with ageing, we must consider
that the antioxidant defences should actually
strongly increase to cope with the enhanced
oxidative stress. In some instances of acute or
sub-acute stress this is actually the case: the
CoQ plasma level in the rat doubles by simple
sham operation \text{(Formiggini et al., 1996), indi-
cating that surgical stress can induce in-
creased ubiquinone release from tissues
and/or increased biosynthesis. On the other
hand, a stronger metabolic stress, such as
liver resection \text{(Formiggini et al., 1996; Ge-
nova et al., 1999), can exhaust the CoQ bio-
synthesis capability, yielding lowered plasma
CoQ levels (Fig. 8).}

Senescence is associated with increased in-
cidence of degenerative diseases, such as
Parkinson’s and Alzheimer’s diseases and age-
linked macular degeneration; these dis-
eases often have a strong genetic component,
which is however associated with exogenous
factors, among which oxidative stress and mi-
Table 7. Exogenous coenzyme Q₁₀ protects isolated rat hepatocytes from Adriamycin-induced oxidative stress (Beyer et al., 1996)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Adriamycin</th>
<th>Adriamycin + CoQ₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆Ψ&lt;sub&gt;mit&lt;/sub&gt;&lt;sup&gt;a&lt;/sup&gt;</td>
<td>233.1 ± 25.2</td>
<td>55.8 ± 6.0</td>
<td>163.8 ± 18.7</td>
</tr>
<tr>
<td>Peroxide production&lt;sup&gt;b&lt;/sup&gt;</td>
<td>17.8 ± 3.2</td>
<td>207.9 ± 28.4</td>
<td>28.2 ± 6.1</td>
</tr>
<tr>
<td>CoQ₁₀&lt;sup&gt;c&lt;/sup&gt;</td>
<td>181.9 ± 22.9</td>
<td>450.2 ± 37.8</td>
<td>281.9 ± 22.6</td>
</tr>
<tr>
<td>CoQ₁₀H₂&lt;sup&gt;c&lt;/sup&gt;</td>
<td>545.7 ± 32.2</td>
<td>251.8 ± 25.7</td>
<td>445.7 ± 28.2</td>
</tr>
<tr>
<td>Reduction (%)</td>
<td>75</td>
<td>36</td>
<td>61</td>
</tr>
<tr>
<td>CoQ₁₀&lt;sup&gt;e&lt;/sup&gt;</td>
<td>30.8 ± 11.7</td>
<td>145.6 ± 32.1</td>
<td>750.4 ± 72.2</td>
</tr>
<tr>
<td>CoQ₁₀H₂&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;e&lt;/sup&gt;</td>
<td>94.8 ± 21.3</td>
<td>trace</td>
<td>403.6 ± 34.3</td>
</tr>
<tr>
<td>Reduction (%)</td>
<td>76</td>
<td>none</td>
<td>35</td>
</tr>
</tbody>
</table>

Hepatocytes were isolated by a collagenase liver-perfusion technique. Hepatocytes (10⁶ cells per ml) were suspended in Krebs-Henseleit medium (pH 7.4) supplemented with 5 mM glucose under an atmosphere of 95% O₂ + 5% CO₂ in a shaking bath at 37°C and incubated with 50 μM Adriamycin for 2 h. The incorporation of CoQ₁₀ was achieved by coinubcation of isolated hepatocytes and CoQ₁₀-enriched liposomes. Flow cytometry analyses were performed with EPICS C cell sorter (Coulter). Fluorescences were excited at 488 nm with an argon laser at 220 mW. Fluorescence was collected through a 488-blocking filter, a 560-nm-long-pass dichroic mirror and a 520-nm-short-pass filter. Values are means ± S.D. (n = 8).<sup>a</sup> Mitochondrial membrane potential was estimated by incubating hepatocytes (3 × 10⁶ cells per ml) with Rhodamine-123 (50 ng/ml) for 10 min. Hydrogen peroxide, released during treatment with Adriamycin, was assayed by incubation at 37°C with dichlorofluorescein-diacetate (2 μM) for 15 min and fluorescence units were converted to concentration units (pmol/10⁶ cells) using a calibration curve.<sup>b</sup> pmol/10⁶ cells.


Linnane, A.W., Marzuki, S., Ozawa, T. & Tanaka, M. (1989) Mitochondrial DNA mutations as


